Why Your Face Looks The Way It Does

science

why y0u look the way you do 2 26
Faces form during the very early stages of embryology. from www.shutterstock.com

Is your face long? Wide? Big nose? Small ears? High forehead?

It’s our faces that characterise how the world sees us, and how we recognise our close friends and family. If you’re lucky enough to be born with a highly symmetrical or a very unique face, perhaps you might have a career as a model or actor.

But how do our faces come about – and what happens when things go awry? We need to look way back to the early stages of life to find out.

From a fertilised cell

Like humans, most creatures throughout the animal kingdom have an instantly recognisable face. Such distinctive features as the trunk of an elephant, the long jaws and abundant sharp teeth of a crocodile, varied shapes and sizes of bird beaks and the unique bill of the platypus are all distinct and recognisable.

Our faces arise during the earliest stages of life. And quite incredibly, the processes that give rise to all these distinctive faces – animal and human – are exceptionally well conserved (that is, haven’t changed much over the course of evolutionary history). Amongst humans and other creatures with backbones (together known as vertebrates), the genes and biological processes that make a face are really very similar.

All animals and humans start out as a fertilised cell. Through thousands of cell divisions, the tissues that will eventually make up the skull, jaws, skin, nerve cells, muscles and blood vessels form and come together to create our face. These are the craniofacial tissues.

The face is among the earliest recognisable features that form in an embryo, with the future eye, nose, ear and tissues that will eventually form the upper and lower jaws all established by about 7-8 weeks in human gestation.

Fusion of two sides

By the sixth week of human development, the major fusion processes of the face have taken place – the two sides of the developing nose will join, both to each other and to the tissue that will become the upper lip. This first fusion (the formation of the “primary palate”) establishes the correct anatomy of the face, and serves as a structural guide for the next major fusion event – that of the secondary, or hard palate.

Why Your Face Looks The Way It DoesThe formation of the face – tissues that comprise the future nose and upper lip (red), the sides of the nose (blue) and the upper and lower jaws (green) arise by the 4th week of development (A) and have migrated and fused to form a distinctive ‘face’ by the 8th week of development (D). New insights into craniofacial morphogenesis, CC BY

The hard palate originates as two separate “shelves”, one from the left side of the embryo and one from the right. These shelves elevate and grow together to form one continuous structure, ultimately separating the cavities of the nose and sinuses from that of the mouth. (You can feel this hard palate with your tongue – it’s the roof of your mouth.)

Once these fusion processes are complete (by about week 9 of gestation, still well inside the first trimester), the cells of the face still continue to dynamically move, reshape, and take on functional roles. This includes forming the structural framework of the bones, the delivery of oxygen and nutrients by the blood vessels, and controlling eye and jaw movements by the facial muscles.

Sometimes things go astray

Of course, given the incredible complexity and synchronicity required for all these cells and tissues to end up in the correct space, it is perhaps very surprising that things do not go wrong in craniofacial development more often than they do.

Across the world, 4-8% of all babies are born each year with defects affecting one or more organs. Of these children, 75% show some anomaly of the head or face.

Problems can occur with any cell types that make up the skull, face, blood vessels, muscles, jaws and teeth.

But one of the most common craniofacial defects are palatal clefts, where the hard palate does not fuse correctly, leaving children (roughly 1 in 700 worldwide) with a large gap between their nasal passages and mouth.

Although relatively easily corrected by trained reconstructive surgeons in first-world health care systems, significant ongoing healthcare is still essential.

Services such as speech pathology and psychological counselling are often required. The children also may need medical attention to improve hearing, as problems with middle ear bones often come with other craniofacial defects.

Later surgeries to correct muscular defects do not come cheaply – assuming of course that such surgical and allied health is available to the individual in the first place. This is frequently not the case outside the first world.

Understanding why problems occur

To reduce both the severity and incidence of craniofacial defects, researchers use animal model systems – particularly mouse, chicken, frog and zebrafish embryos – to try and uncover the reasons why these defects occur.

Of all craniofacial defects, 25% are attributed (at least partially) to environmental factors such as smoking, heavy alcohol or drug use, toxic metals and maternal infection (such as salmonella or rubella) during pregnancy.

About 75% of all craniofacial defects are linked to genetic factors. As most of the genes that control craniofacial development in animals also do so in humans, using these animal models helps us better understand human palate development and how specific genes are involved.

Eventually this work may lead to new prevention and treatment strategies, for example supplementing the mother’s diet with beneficial nutrients and vitamins.

An example of such an intervention is the B-vitamin folate, used to reduce neural tube defects such as spina bifida. Mandatory folic acid fortification of food in the USA in 1999-2000 resulted in a 25-30% reduction in severe neural tube defects, clearly an exceptional outcome for newborns and their families.

Through greater understanding of the genetic processes that drive facial growth, further beneficial factors will be identified that can be safely given to pregnant mothers, and give a far better start to life to children that may otherwise be born with a craniofacial disorder.The Conversation

About The Author

Sebastian Dworkin, Group Leader, Developmental Genetics Lab, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Human Genetics

scienceAuthor: Ricki Lewis
Binding: Paperback
Studio: McGraw Hill Higher Education
Label: McGraw Hill Higher Education
Publisher: McGraw Hill Higher Education
Manufacturer: McGraw Hill Higher Education

Buy Now
Editorial Review: Today, human genetics is for everyone. It is about variation more than about illnesses, and increasingly about the common rather than about the rare. Once an obscure science or an occasional explanation for an odd collection of symptoms, human genetics is now part of everyday conversation. By coming to know genetic backgrounds, people can control their environments in more healthy ways. Genetic knowledge is, therefore, both informative and empowering. This edition of Human Genetics: Concepts and Applications shows students how and why that is true.




Human Genetics

scienceAuthor: Ricki Lewis Dr.
Binding: Paperback
Studio: McGraw-Hill Education
Label: McGraw-Hill Education
Publisher: McGraw-Hill Education
Manufacturer: McGraw-Hill Education

Buy Now
Editorial Review: Our title is book only; no access codes




Human Molecular Genetics

scienceAuthor: Tom Strachan
Binding: Paperback
Format: International Edition
Studio: Garland Science
Label: Garland Science
Publisher: Garland Science
Manufacturer: Garland Science

Buy Now
Editorial Review:

Human Molecular Genetics has been carefully crafted over successive editions to provide an authoritative introduction to the molecular aspects of human genetics, genomics and cell biology.

Maintaining the features that have made previous editions so popular, this fifth edition has been completely updated in line with the latest developments in the field. Older technologies such as cloning and hybridization have been merged and summarized, coverage of newer DNA sequencing technologies has been expanded, and powerful new gene editing and single-cell genomics technologies have been added. The coverage of GWAS, functional genomics, stem cells, and disease modeling has been expanded. Greater focus is given to inheritance and variation in the context of populations and on the role of epigenetics in gene regulation.

Key features:

  • Fully integrated approach to the molecular aspects of human genetics, genomics, and cell biology
  • Accessible text is supported and enhanced throughout by superb artwork illustrating the key concepts and mechanisms
  • Summary boxes at the end of each chapter provide clear learning points
  • Annotated further reading helps readers navigate the wealth of additional information in this complex subject and provides direction for further study
  • Reorganized into five sections for improved access to related topics
  • Also new to this edition – brand new chapter on evolution and anthropology from the authors of the highly acclaimed Human Evolutionary Genetics

A proven and popular textbook for upper-level undergraduates and graduate students, the new edition of Human Molecular Genetics remains the ‘go-to’ book for those studying human molecular genetics or genomics courses around the world.





science
enafarzh-CNzh-TWtlfrdehiiditjamsptrues

follow InnerSelf on

google-plus-iconfacebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

follow InnerSelf on

google-plus-iconfacebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}