Fixing Palm Oil’s Other Climate Threat

Fixing Palm Oil’s Other Climate Threat

Methane emissions from oil palm plantations are a growing contributor to climate change. But they could be turned into renewable energy with existing technology.

Standing beside a palm oil wastewater lagoon can promote a vague sense of unease. The murky brown surface appears more molten than aqueous, blanketed in roiling bubbles that suggest the imminent emergence of a mythical beast. Plus, it stinks.

Thousands of these lagoons are spread across the tropics, and the number is growing steadily. Should you find yourself beside one, the bubbles you will see are indeed the product of subsurface life. But it’s not a hidden monster. Instead, untold trillions of microbes (and perhaps a few crocodiles) chew threw the waste stream. Each bubble is full of methane gas, leaking from these lagoons at staggeringly high rates. Toss a match onto the foamy surface and it might burst into flame.

After carbon dioxide, methane is the leading cause of a warming planet. Recently, in a paper in Nature Climate Change, we showed that the methane produced by a typical palm oil lagoon has the same annual climate impact as driving 22,000 passenger cars. With well over a thousand (and counting) palm oil processing plants now in operation, palm oil wastewater methane emissions account for more than one-third of the warming potential of greenhouse gas release from rainforest and peat swamp destruction in Malaysia and Indonesia, where 85 percent of palm oil is produced. Already, palm oil methane leaks are equivalent to nearly 10 percent of the amount of methane arising from global natural gas production and transportation. As the industry moves toward intensification rather than land expansion, the relative importance of wastewater methane will only rise (intensification practices that drive higher yields will ultimately create richer wastewater, and in turn, more methane).
Methane bubbling at the surface of a lagoon

Palm Oil Plantations Are A Growing Contributor To Climate Change

Wastewater methane emissions from palm oil plantations are a growing contributor to climate change. Philip Taylor and team quantified the bioenergy potential of this lagoon system at Coopeagropal R.L. in Costa Rica (http://www.coopeagropal.com/). The methane, seen bubbling at the surface, is now being used at a biogas power facility for electricity production. Photo by Philip Taylor.

Palm lagoons leak huge amounts of methane because they are the narrow end of a funnel. Just as a watershed can focus a county’s worth of rain through a river only a stone’s throw wide, vast palm plantations harness some of the highest rates of plant productivity on Earth and push it through a single processing plant. Much of it becomes everything from toothpaste to Tater Tots. The rest goes into those lagoons. And as with any wastewater treatment facility, the lagoons are designed to break down huge amounts of organic matter, most of which becomes methane. On a large scale, that’s bad news for the climate.

This is all just the cost of doing business, right? Well, maybe not. The very features that create high wastewater methane emissions add up to a largely unmet opportunity: concentrated methane is energy for the taking. For any given palm oil mill, all you need is a roof on the lagoons and a biogas generator next door, and the climate impact is reduced 34-fold while enough new power is generated for tens of thousands of rural households. Biogas technology is decades old, and often used at wastewater facilities in the U.S. and Europe. We know how to do it, and it works.

Yet fewer than 5 percent of the world’s palm oil mills have biogas capture systems, because, for most plants, it’s not worth the investment. Wastewater methane could power the palm oil mill itself, but most already harness solid waste streams for bioenergy. Sell power to the grid, and up front investments in biogas facilities can turn a sizable profit within only a few years — but many plantations are too remote for current grid access. And for mills close to the grid, reliable power purchase agreements and feed-in tariffs fairly adjusted for fossil fuel subsidies can be difficult to acquire. Most tropical nations lack innovative energy policies that can integrate distributed, small-scale renewable energy (with Thailand and Brazil being notable exceptions). And even though biogas facilities can turn a profit, the financial returns often pale in comparison to those expected from core business investments such as land banking, boosting yields and plantation development.

Most greenhouse gas emissions tend to occur in supply chains. Green those, and you start to make a real dent — and maybe turn a profit at the same time.

Higher Valuation Of CO2 Emissions In Carbon Markets Would Help

Still, there are ways we might see faster adoption. Higher valuation of CO2 emissions in carbon markets would help. From 2008 to 2011, carbon was trading well above $10 per metric ton, and palm oil mills were able to finance methane capture systems through carbon revenues via the United Nations Clean Development Mechanism. Adding energy returns just made the deal sweeter, resulting in the first wave of biogas facilities throughout the industry. But when the price of carbon plummeted, biogas development largely evaporated.

In lieu of attractive carbon prices, pressure to “green” corporate supply chains could make a difference. Forward-thinking companies are already moving quickly to cut greenhouse gas emissions in an effort to reduce carbon risks and improve financial returns. For the most part, mitigation efforts have focused on emissions from operations — what are known as SCOPE 1 and 2 emissions. But most greenhouse gas emissions tend to occur in supply chains — what are known as SCOPE 3 emissions. Green those, and you start to make a real dent — and maybe turn a profit at the same time.
Biogas power system

Wastewater methane emissions from palm oil plantations are a growing contributor to climate change. But they could be turned into renewable energy with existing technology, like this biogas power system in Thailand. Photo courtesy of Univanich Palm Oil PCL.

Unilever, Uses About 3 Percent Of The World’s Palm Oil

Take Unilever, which uses about 3 percent of the world’s palm oil for its household product brands. The company has taken bold action in reducing carbon-producing deforestation within its supply chain — but its supply chain methane emissions are on par with the fossil fuel–related emissions of Cambodia or Uganda, with palm oil methane emissions approximately double companywide SCOPE 1 and 2 emissions, and nearly four times the total emission reductions achieved from improvements in manufacturing and logistics operations from 2008 to 2012. This same story plays out for many other household corporations, including Proctor and Gamble, Walmart, Kraft, Nestlé, Cadbury, the Hershey Company, McDonald’s, PepsiCo, Colgate, General Mills and Kellogg’s. SCOPE 3 emissions largely fly beneath the public eye.

If Unilever converted its methane waste to energy, it could provide renewable power to over 1 million households in rural Malaysia and Indonesia, where most of its palm oil is sourced. Each facility would cost roughly $3 million to $5 million, and typical return on investment would vary from 6 percent to more than 20 percent over the lifespan of the project. Already, Unilever is capturing energy in waste: 30 of its 252 manufacturing sites have biomass-based power, which generate 7 percent of its energy consumption. The same could happen for wastewater methane.

Until market demand rises in India and China, the other half of the sustainable palm oil produced will be sold at conventional rates, creating a disincentive for growers to invest in the certified product. It’s much harder to push a chain than pull one.

Consumer Pressure Has Begun To Make A Dent

Meanwhile, consumer pressure has begun to make a dent in palm oil greenhouse gas emissions. Recently, Unilever signed a commitment to stop carbon-emitting forest destruction with its supplier Wilmar, which controls 45 percent of global palm oil production. This comes at a cost for Wilmar, since most rainforests are still worth more dead than alive. Another palm oil giant, Golden Agri Resources, also recently committed to zero deforestation across its supply chain. Similar pressures and policy instruments could help catalyze biogas development. It’s expected that the Roundtable for Sustainable Palm Oil, members of which sell deforestation-free products, will require methane mitigation for certification sometime in the future. The RSPO has been instrumental in bringing sustainable palm oil to market, but while in the U.S. it can seem as though the organization is making a difference, it’s not especially influential on a global scale. RSPO-certified palm oil has plateaued at 15 percent of market volume, and only half of it is being sold at higher prices that would justify the costs involved in creating a certified product. Until market demand rises in India and China, the other half of the sustainable palm oil produced will be sold at conventional rates, creating a disincentive for growers to invest in the certified product. It’s much harder to push a chain than pull one.

Encouragingly, the Indonesian government launched the Indonesia Sustainable Palm Oil initiative, making it mandatory for palm oil firms operating in Indonesia to make efforts toward installing biogas capture systems. Yet, making efforts doesn’t translate to installation, and (for good reason) wastewater methane capture is a secondary priority of the initiative to slowing rampant deforestation. Moreover, compliance doesn’t take effect until 2020. For these reasons and more, greening supply chains can be tough, and for now buying certified sustainable palm oil is a slow way to catalyze biogas development.

Still, as a recent essay in this magazine argues, targeting hot spot problems in just a few places globally can achieve substantial progress toward climate mitigation. Palm oil wastewater is one of those places. Taken together, the rise of regulatory frameworks, the eventual prospect for proper carbon valuation, and shifts in consumer and corporate partner behavior should start turning the tide.

About The Authors

taylor philipPhilip Taylor is a postdoctoral fellow at the University of Colorado Boulder. His research focuses on how humans are changing the Earth and what these changes mean for human and ecosystem welfare, particularly in the tropics. He is passionate about developing strategies for a sustainable future and putting them into action in the public and private sectors.

 

townsend alanAlan Townsend is a professor of Ecology and Evolutionary Biology and Fellow of the Institute of Arctic and Alpine Research at the University of Colorado Boulder. His lab group studies how Earth’s major biogeochemical cycles are changing and what it means for the ecosystems on which we all depend.

 

climate_books

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.