Vast Wildfires Are Burning In Remote Siberia

Vast Wildfires Are Burning far From Humans In Remote Siberia

You’ve probably seen dramatic images of out of control wildfires that directly and immediately affect people. The news recently followed 200 firefighters tackling a blaze in California, while this May many watched the evacuation of more than 50,000 people from Fort McMurray in Canada.

But, every so often, in regions too remote for the TV cameras, satellite images reveal vast fires covering thousands of square kilometres in smoke. This is what’s happening in Siberia, right now.

This all leaves an impression of large-scale destruction and ecological disaster. But are we really right to be worried?

Red dots represent fires in Siberia on July 22, with smoke extending thousands of kilometres to the west. NASA WorldviewRed dots represent fires in Siberia on July 22, with smoke extending thousands of kilometres to the west. NASA WorldviewAlthough – wrongly – perceived as avoidable disasters, wildfires have been a natural and fundamental part of many of the world’s forests, grasslands and shrublands for millions of years. Fire is part of a natural rejuvenation cycle in these ecosystems. Attempts to eliminate it can have negative ecological impacts such as loss of biodiversity or increased vulnerability of forests to disease, and simply increase the risk of larger, more catastrophic fires.

Although necessary for many ecosystems, wildfires do release vast amounts of carbon into the atmosphere, currently 1.6–2.8 gigatonnes a year, equivalent to a third of the total amount emitted from the burning of fossil fuels. The CO2 emissions from fires help accelerate global warming, which in turn leads to more fire, while soot emitted from fires is often deposited on ice leading to accelerated melting.

But that’s only part of the story. While burning vegetation inevitably releases carbon, this carbon is normally taken up again when the forest regrows. And charcoal formed during burning means carbon is “locked up” in soils and sediments. So wildfires in regions adapted to fire can overall be considered “carbon neutral” or in some cases even lead to carbon sequestration in the longer-term.

This means naturally recurring wildfires aren’t necessarily a threat to ecosystems or the global climate. What is of wider concern, however, is when they occur in ecosystems that are not well adapted to fire such as tropical forest or peatlands, or where fires are changing in their extent, or in how severely they burn the landscape. While the average annual area burned globally has changed surprisingly little during the last few decades, there are worrying trends in some regions such as larger blazes and longer fire seasons in the western US as a result of land management and a warming climate.

Considering all this, what about the current fires in Siberia? Are they really anything out of the ordinary – and what should we make of the concern raised by Greenpeace, that the Russian government’s official figures of area burnt are huge underestimations?

Satellite observations can help us answer these two questions. First, satellite data has long shown that Russian government statistics are substantial underestimations of actual fire activity. Second, the annual area burned in boreal Asia (predominantly Siberia) is particularly variable, compared to the world’s other main vegetation zones. On average around 5m hectares have burned every year between 2001 and 2012, but this covered a range of more than than 15m in 2003 to less than 3m in 2005. The area burned so far this year in Siberia is well within that range, but then we’ve only just reached midsummer – the season is not yet over.

Just like boreal Canada, temperatures in Siberia are increasing faster than in many other parts of the world and this trend is expected to continue. Rising temperatures lead to drier vegetation, to fuel the fires, and more lightning, which increases the risk of fire. A hotter climate also lengthens the season during which fires occur. These factors combined are expected to increase fire activity in this region.

What is particularly worrying here is some of the fires in Siberia and other boreal regions affect peatlands which are gradually thawing thanks to global warming. This has a knock-on effect on the climate. When they burn deep into the ground peatland fires can release carbon that has accumulated over millennia and turn these peatlands from being net carbon sinks to long-term carbon emitters. So irrespective of discrepancies in reporting of fires in Siberia and the fact that fires are a natural feature of boreal forests, we can expect more fires and more associated greenhouse gas emissions in boreal regions in a warming world.

About The AuthorThe Conversations

Stefan H. Doerr, Professor of Geography, Swansea University

Cristina Santin, Research Officer, Geography, Swansea University

This article was originally published on The Conversation. Read the original article.

Related Books

InnerSelf Market

Amazon


InnerSelf Market

Amazon


InnerSelf Market

Amazon

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.