Thanks for visiting, where there are 20,000+ life-altering articles promoting "New Attitudes and New Possibilities." All articles are translated into 30+ languagesSubscribe to InnerSelf Magazine, published weekly, and Marie T Russell's Daily Inspiration. InnerSelf Magazine has been published since 1985.


As a result of their unique features, organic solar cells have a number of potential applications, including integration into windows to generate energy from sunlight. Photos courtesy of MaterialDistrict

When you picture solar power, chances are you conjure up images of large solar panels spanning the length of a rooftop or a large solar farm out in a field. But what if you could put a solar panel in the sunroof of a hybrid car, on a tent or within the windows of an office building? What if you could power a vaccine refrigerator in a remote place with a flexible solar panel that could be shipped in a mailing tube? These are just a few possible applications of a relatively new technology known as organic solar cells (OSCs) — new, at least, when compared with silicon solar technology, which has been around since the 1950s.

Like traditional silicon solar technology, OSCs turn the sun’s energy into usable electricity. But they are far more versatile than conventional solar photovoltaics. OSCs are lightweight and flexible and can be made to be semitransparent or in various colors. These qualities give them potential applications for textile, vehicle and building-integrated solar cells, and for creating power in areas where it does not exist.

Unique Applications

While additional funding and research are needed to bring OSCs to the commercial market, experts agree they will play an important role in the future of solar technology. That said, they won’t replace or compete head-to-head with silicon solar cells. “We shouldn’t expect to see expansive fields of OSCs, like those that generate gigawatts of power at silicon solar farms,” says Seth Marder, a chemistry professor at Georgia Tech.  Silicon solar is suitable for providing large-scale solar power, while OSCs have other unique strengths that guide its real-world applications. 

Two unique features of OSCs are their thinness and flexibility. While a typical silicon solar cell is about as thick as the average width of a human hair, most OSCs are roughly a thousand times thinner. Because of their thinness and flexibility, OSCs can be fabricated on curved surfaces and flexible backings. For example, they can be patched or integrated into the fabric of tents, backpacks and even clothing. Most of these products are still under development and occupy a niche market, but they demonstrate the innovative creativity that OSCs provide. With OSC technology, the possibilities for where solar cells can be used has been greatly expanded beyond just rooftops and solar farms.

innerself subscribe graphic

OSCs also can be made transparent, semitransparent or in various colors. As a result, there are many potential applications for architectural use. For example, transparent OSCs could be integrated into windows to generate energy from sunlight that might otherwise warm a room and contribute to higher air conditioning costs. Franky So, a materials science and engineering professor at North Carolina State University, offers yet another application: OSCs could be used in sunroofs to help power electric and hybrid vehicles.

Additionally, low up-front investment and potentially low product shipping costs make OSC technology accessible to communities in developing countries that lack access to an electrical grid and the financial means to build one. OSCs have a unique ability to “bring power where power does not exist,” explains Malika Jeffries-EL, an associate professor of chemistry at Boston University. In these instances, OSC technology could provide essential electricity in the smaller quantities needed for tasks such as lighting, charging cell phones, and refrigerating medications and vaccines.

Another selling point of OSCs is that they are less energy intensive to manufacture than are silicon solar cells. Extremely hot furnaces — upwards of 1,500 °C (2,700 °F) — are needed to generate high purity silicon for silicon solar cells. By comparison, large-scale OSCs can be manufactured by simply printing the layers of the cell onto a backing in a process similar to that used to print newspapers. Because this process consumes less energy, OSCs have a significantly shorter energy payback time than silicon cells. In other words, OSCs require a shorter amount of time to generate the amount of energy it took to manufacture them.

How It Works

The first organic solar cell was developed in 1958, but it wasn’t until the 2000s that OSCs saw a significant increase in efficiency. This improved OSC technology emerged from the field of organic light-emitting diodes, commonly known as OLEDs. OLED technology is used for many television and phone screens on the market today. In an OLED screen, a layer of organic molecules (molecules composed primarily of carbon and hydrogen atoms) emits light when an electric current is applied. OSCs work in essentially the opposite way — the layer of organic molecules generates an electric current when exposed to light.

An organic solar cell is made up of multiple layers of materials, one of which is the acceptor layer. When sunlight hits the cell, an electron is released from the layer of organic molecules, and the job of the acceptor is to pass that electron on to the electrode. This process causes a build-up of charge, which is what generates electricity.

Graph of efficiency of OSCs from 2000 to 2020With the development of non-fullerene acceptors, the efficiency of OSCs increased sharply. Graph courtesy of Dr. Felipe Larrain

Traditionally, the most commonly used acceptors in OSCs were materials based on fullerene — a molecule composed of 60 carbon atoms joined together in a structure that resembles a soccer ball. However, with fullerene acceptors the efficiency of OSCs was limited to around 10%. In other words, only 10% of the sunlight hitting the solar cell was converted into electricity. Researchers therefore set out to explore new types of acceptor layers as a means to increase OSC efficiency.

The breakthrough that permitted OSCs to achieve higher efficiencies was the development of non-fullerene acceptors (NFAs). With NFAs the efficiency of OSCs increased sharply — up to 18% in just a few years. This has brought OSCs to the lower end of the 18% to 22% efficiency of the average commercially available silicon solar cell. This uptick in efficiency has exceeded the expectations of many experts, some of whom began working in the field when the efficiency of OSCs hovered around just 3%. “If 10 years ago you had told me we would have organic solar cells of 18% efficiency, I would have laughed,” Marder says.  

Barriers to Overcome

There is still much work to be done before OSCs can be widely marketed. One of the biggest challenges is the solvents used in the manufacturing process. Most of the top-performing OSCs are made using chlorinated solvents, which present both health and environmental hazards. “When scaling up OSC manufacturing, you have to consider the exposure of people who will be working in the manufacturing plants,” says Bernard Kippelen, a professor of electrical and computer engineering at Georgia Tech. The research to date has focused largely on obtaining increasingly higher efficiencies, but as Kippelen says, “we need an approach that goes well beyond just one number.” To make OSCs a viable technology, the manufacturing process must be optimized to make it safer and more cost-effective.

Another barrier to the mass production of OSCs is the difference between the efficiencies of individual cells tested under ideal lab conditions, and the efficiencies that have been demonstrated for larger modules. Individual cells can have high efficiencies, but assembling multiple cells into modules, panels or arrays requires additional electrical connections that will decrease the efficiency. However, as Kippelen points out, these sorts of disparities are expected. “It takes some time before the increases in cell efficiency are reflected in the efficiencies of modules coming off the manufacturing lines,” he says. “The same was true of silicon solar cells.”

Funding for OSC research is another concern. In the United States, much of the funding for solar cell research comes from government agencies, such as the Department of Energy. However, according to Kippelen “a lot of funding sources kind of dried up to do research on OSC,” due to the emergence of a rapidly expanding class of solar cells called perovskites. “There has been a lot of excitement around the use of perovskites because their efficiency is even higher than silicon in some cases,” says Kippelen. However, even as funding for OSCs has decreased in the U.S., China continues to spearhead OSC research and development. “The amount of work [on OSC research] in the United States is a tiny fraction of the amount of work in China,” Marder says. “People in China are going full blast on this.” 

Reasons for Optimism

Future world energy consumption will continue to rise, especially as developing countries aspire to the same benefits of on-demand energy production that developed countries enjoy. Researchers like Marder, Kippelen, Jeffries-EL and So say OSC technology has the potential to play a unique and important role in the global transition toward renewable energy. The recent increase in OSC efficiency to 18% has many researchers working to advance this technology, and scientists are now looking into tandem OSCs (which use two different materials that absorb distinct wavelengths of sunlight) to capture even more energy. Some are hopeful that this development could increase OSC efficiency even further — up to 20%.

Kippelen calls for a long-term view of OSC technology. “Solar technology is going to be around for a long time,” he says, “and I truly believe OSC, with time, will establish itself as a really important technology.”

About The Author

 Kellie Stellmach is a graduate student pursuing her Ph.D. in chemistry at Georgia Tech. She is passionate about developing new organic materials to address environmental and sustainability challenges. Her current research focuses on the synthesis of low ceiling temperature polymers with potential applications as recyclable materials.

Related Books

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming

by Paul Hawken and Tom Steyer
9780143130444In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. Available On Amazon

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy

by Hal Harvey, Robbie Orvis, Jeffrey Rissman
1610919564With the effects of climate change already upon us, the need to cut global greenhouse gas emissions is nothing less than urgent. It’s a daunting challenge, but the technologies and strategies to meet it exist today. A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well. Available On Amazon

This Changes Everything: Capitalism vs. The Climate

by Naomi Klein
1451697392In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance to simultaneously reduce gaping inequalities, re-imagine our broken democracies, and rebuild our gutted local economies. She exposes the ideological desperation of the climate-change deniers, the messianic delusions of the would-be geoengineers, and the tragic defeatism of too many mainstream green initiatives. And she demonstrates precisely why the market has not—and cannot—fix the climate crisis but will instead make things worse, with ever more extreme and ecologically damaging extraction methods, accompanied by rampant disaster capitalism. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you,, and at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.


This article originally appeared on Ensia



Thanks for visiting, where there are 20,000+ life-altering articles promoting "New Attitudes and New Possibilities." All articles are translated into 30+ languages. Subscribe to InnerSelf Magazine, published weekly, and Marie T Russell's Daily Inspiration. InnerSelf Magazine has been published since 1985.

  How is it possible that the collapse of a relatively small financial institution like SVB could be so contagious as to end up having global consequences, including bringing down a...

In the closing years of Elizabeth I’s reign, England saw the emergence of arguably the world’s first effective welfare state. Laws were established which successfully protected people from rises in...

Such a prohibition has been in place before. As President Joe Biden noted in his June 2, 2022, speech addressing gun violence, almost three decades ago bipartisan support in Congress helped push...

U.S. income inequality grew in 2021 for the first time in a decade, according to data the Census Bureau released in September 2022.

“We have a sense that we are about to face immense upheavals,” Maja Göpel writes, and we need to find ways to tackle multiple problems at once...

  Media theorist Marshall McLuhan suggested that each media-related extension of man comes at the expense of another organ. For example, by increasing reliance on visual media, we lose touch...