CO₂ Levels And Climate Change: Is There Really A Controversy? Michal Pech/Unsplash

The relationship between atmospheric CO2 levels and climate change is often perceived as a controversial subject. While there’s no real disagreement among climate scientists – around 90% fully agree that human activity is clearly responsible for climate change – in the United States in 2016, barely 50% of the general public came to the same conclusion. Adding to the general confusion, highly active “climate-change deniers” claim that temperature has evolved independently of CO2 atmospheric concentrations through Earth’s history, and that therefore today’s rising CO2 levels are not an issue.

So did scientists get the story wrong? No. CO2 has long contributed to controlling the Earth’s climate, and its rising concentration in the atmosphere and oceans is a major threat to humanity.

Together with solar activity and albedo, greenhouse gases are a key part of Earth’s radiative budget and exert a strong control on surface temperature. Although water vapour is the primary greenhouse gas on Earth, CO2 draws much more attention because it can actively lead climate change.

Unfortunately, human activity delivers CO2 to the atmosphere at a rate 70 times greater than all volcanoes on Earth combined. As a result, atmospheric CO2 concentration (or pCO2) increases and the surface of the Earth warms up at a pace that no natural factor can explain.

We know that CO2 is a temperature control and we can demonstrate it in various ways. One of them is through the exploration of Earth’s history.

innerself subscribe graphic

CO₂ Levels And Climate Change: Is There Really A Controversy? North America from low orbiting satellite Suomi. NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring

Climate and temperature through geological times

Using rocks, fossils and their chemical and physical properties, geoscientists have reconstructed warm and cold periods throughout Earth’s history. To demonstrate the link between climate, temperature and pCO2 millions of years ago, we need to reconstruct each of them independently. To do so, we use climatic recorders called “proxies”.

The isotopic composition of oxygen atoms, written δ¹⁸O, measured in ancient calcareous shells, is one of them. It allows us to reconstruct past seawater temperatures with a well-known degree of uncertainty that depends on analytical precision and how parameters such as seawater δ¹⁸O, salinity and pH also affect the δ¹⁸O of shells.

Because geological history affects rocks and their signals, the further we go back in time, the larger are the uncertainties. We thus combine different proxies and formulate hypotheses that continually improve with years of research. Establishing such reconstructions is a slow, complicated (sometimes painful) process but they become more and more reliable every year as uncertainties decrease. If uncertainties are too large, interpretations rely on parsimony: the simplest model must be considered the likeliest. What matters is that scientists know how to estimate uncertainties, and share them.

Overall, seawater temperature reconstructions agree with geological observations of climate history: major ice ages coincide with lower global temperature. In particular, δ¹⁸O indicate a steady cooling from 50 million years onwards, leading to the preindustrial climate.

CO₂ Levels And Climate Change: Is There Really A Controversy? GEOCARB (version III) reconstruction of pCO₂ (yellow, one point every 10 million years) and average tropical sea surface temperature from δ¹⁸O of carbonates corrected for seawater pH changes assuming no δ¹⁸O changes for seawater (red) compared with geologically constrained cold periods (light blue) and glaciations (dark blue). G. Paris after Royer and Beerling (2004) and Berner and Khotavala (2011), Author provided

The history of pCO2

Proxies exist for pCO2 as well. For instance, palaeontologists count stomataapertures through which plants breathe, exchange moisture and take up CO2 for photosynthesis – on fossil leaves. The more CO2 is abundant, the fewer stomata are required. One factor that adds a degree of uncertainty is that plants have fewer stomata under drier climates and more under humid ones.

Fossil leaves are rare and atmospheric pCO2 data are scarce for ancient periods of Earth. In the absence of (sufficient) data, numerical modelling helps explain data with a globally coherent approach that respects the fundamental laws of physics. One of the most famous is GEOCARB, a geological carbon cycle model developed to reconstruct pCO2 history by Robert Berner and his colleagues.

On timescales greater than 100,000 years, pCO2 is primarily added from volcanoes, and lost through two carbon pumps: the biological pump and the carbonate pump.

During photosynthesis, plants and algae take up CO2 to build their organic matter. When they die, this CO2 might get trapped in sediments. This is the biological pump. The carbonate pump is the coupling between weathering of continents and carbonate rock precipitation. CO2 acidifies surface waters that dissolve rocks. Dissolved elements are washed to the ocean where they are used to build calcareous material such as shells or corals, which eventually become limestones. Year after year, these pumps store CO2 away from the atmosphere.

In the past, volcanoes could have been more or less active; continents were in different locations, which affected the carbon pumps. Berner and colleagues quantified how the otherwise known evolution of those parameters affected the carbon cycle and, therefore, atmospheric pCO2. They knew and displayed their model uncertainty. Their results should be presented with an estimation envelope, not as a given value.

Times of higher pCO2 are warm periods. Conversely, decrease in atmospheric CO2 content triggered glacial periods such as of the Carboniferous and modern ice ages, with the possible exception of the Hirnantian (445 million years ago). Recent models suggest that for this remote period, the tectonic configuration played a specific role.

How humans quickly affect climate

CO₂ Levels And Climate Change: Is There Really A Controversy? Temperature and pCO₂ reconstructions for the last 66 My. Temperatures are calculated using the δ¹⁸O of carbonates and are represented without their uncertainty. The pCO₂ reconstruction is based on seven different proxies in agreement within their respective uncertainties. Beerling and Royer, 2011., Author provided

Over the time period beginning at the point that dinosaurs went extinct (a relatively recent 66 My ago), geologists can rely on many temperature and CO2 proxies in addition to δ¹⁸O or fossil leaves. The closer we get to our era, the more proxies there are and the fewer the uncertainties are, until we can connect geological and ice core data that support each other.

Tectonics modified oceanic circulation and led to the building of mountain ranges like the Himalayas. Both factors affected the carbon pumps and forced pCO2 to decrease, as shown by proxies and in agreement with the GEOCARB trends. This decrease in pCO2 led to the observed cooling and drove the Earth to the current glacial-interglacial alternation.

We can determine from ice cores and proxies that pCO2 has been oscillating between 200 and 350 ppm for 2.6 million years and that it suddenly increased from 280 to 410 ppm between 1850 and 2018. pCO2 is heading toward levels unprecedented for 5, or even 30 million years, when the Earth was much warmer than today and no Atlantic ice caps were present. Reconstructions of temperature and pCO2 can offer us a glimpse into what lies ahead of us if we don’t slow down CO2 emissions.

On long time scales, when pCO2 increases, warming stimulates the carbon pumps, thereby helping pCO2 to decrease. This negative feedback can act as a geological thermostat. Unfortunately, it is too slow to react rapidly enough to compensate for our fast emissions. On the timescale of a decade, warming aggravates CO2 release to the atmosphere. When temperature increases, oceans warm up and release dissolved CO2 to the atmosphere. For 2.6 million years, glacial and interglacial cycles have been forced by Earth’s orbital fluctuations and CO2 was only an internal positive feedback. Today, anthropogenic CO2 leads and amplifies the ongoing warming.

CO₂ Levels And Climate Change: Is There Really A Controversy? Carbon cycle geological thermostat. The + means that the parameters are stimulated by an increase of the factor located before the arrow. The – means that the parameter is attenuated. For example, carbon pumps decrease atmospheric CO₂ while volcanic inputs increase it. Pierre-Henri Blard and Guillaume Paris

As a result of the pCO2 increase, the average surface temperature has already increased by almost 1°C between 1901 and 2012. The Earth’s surface has been much warmer than today in the past and it will eventually cool off. However, the consequences of the short-term changes are disastrous. In addition to higher surface temperatures, extreme weather events, ocean acidification, ice melting and sea-level rise are about to significantly disrupt our daily lives and harms the ecosystems around us.

Earth science helps us understand the past of our planet. We cannot control Earth’s orbit, tectonics or oceanic circulation but we can control our greenhouse-gas emissions. The future is for all of us to build.The Conversation

About The Author

Guillaume Paris, Géochimiste, chargé de recherche CNRS au Centre de recherches pétrographiques et géochimiques de Nancy, Université de Lorraine and Pierre-Henri Blard, Géochronologue et paléoclimatologue, chargé de recherches CNRS - Centre de recherches pétrographiques et géochimiques (Nancy) et Laboratoire de glaciologie (Bruxelles), Université de Lorraine

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Climate Change: What Everyone Needs to Know

by Joseph Romm
0190866101The essential primer on what will be the defining issue of our time, Climate Change: What Everyone Needs to Know® is a clear-eyed overview of the science, conflicts, and implications of our warming planet. From Joseph Romm, Chief Science Advisor for National Geographic's Years of Living Dangerously series and one of Rolling Stone's "100 people who are changing America," Climate Change offers user-friendly, scientifically rigorous answers to the most difficult (and commonly politicized) questions surrounding what climatologist Lonnie Thompson has deemed "a clear and present danger to civilization.". Available On Amazon

Climate Change: The Science of Global Warming and Our Energy Future second edition Edition

by Jason Smerdon
0231172834This second edition of Climate Change is an accessible and comprehensive guide to the science behind global warming. Exquisitely illustrated, the text is geared toward students at a variety of levels. Edmond A. Mathez and Jason E. Smerdon provide a broad, informative introduction to the science that underlies our understanding of the climate system and the effects of human activity on the warming of our planet.Mathez and Smerdon describe the roles that the atmosphere and ocean play in our climate, introduce the concept of radiation balance, and explain climate changes that occurred in the past. They also detail the human activities that influence the climate, such as greenhouse gas and aerosol emissions and deforestation, as well as the effects of natural phenomena.  Available On Amazon

The Science of Climate Change: A Hands-On Course

by Blair Lee, Alina Bachmann
194747300XThe Science of Climate Change: A Hands-On Course uses text and eighteen hands-on activities to explain and teach the science of global warming and climate change, how humans are responsible, and what can be done to slow or stop the rate of global warming and climate change. This book is a complete, comprehensive guide to an essential environmental topic. Subjects covered in this book include: how molecules transfer energy from the sun to warm the atmosphere, greenhouse gases, the greenhouse effect, global warming, the Industrial Revolution, the combustion reaction, feedback loops, the relationship between weather and climate, climate change, carbon sinks, extinction, carbon footprint, recycling, and alternative energy. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you,, and at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.