Pollinators At Risk: Neonicotinoid Pesticides Stop Bees And Flies From Getting A Good Night's Sleep
Sleeping on the job? Maciej Olszewski/Shutterstock

Neonicotinoids, the most commonly used pesticides in the world, were banned in the EU in 2018. More than 99,000 people petitioned the UK government to support the ban amid a wealth of scientific evidence linking this group of chemicals to poor health in bees, from the reduced production of bumblebee queens to slashed sperm counts among male honeybees.

The UK government had pledged to keep the EU’s restrictions post-Brexit, but recently granted a special exemption to allow farmers to use the neonicotinoid thiamethoxam on sugarbeet throughout 2021, and possibly until 2023.

If this signals the government’s intention to roll back regulations on agricultural chemicals now that the UK has left the EU, the consequences for pollinating insects could be dire. Research into the effects of these pesticides on pollinators is still ongoing, but new harmful effects are discovered all the time.

Pollinators At Risk: Neonicotinoid Pesticides Stop Bees And Flies From Getting A Good Night's SleepNeonicotinoids are sprayed onto farm fields to control pests such as aphids and grubs. Fotokostic/Shutterstock

In a new study, my colleagues and I have uncovered the most recent example. We looked into the effect of these pesticides on the body clock and sleep of flies and bumblebees.


innerself subscribe graphic


Just like us, insects need sleep. And, like us, they have an internal sense of time – more commonly known as a body clock – which helps them synchronise their activity and sleep patterns with the rest of the world. Your body clock might allow you to wake up just a few minutes before your alarm goes off. For insects, it ensures they’re able to forage in the day when flowers are open and sleep at night when it’s usually too dark to fly.

Using lab-based colonies of buff-tailed bumblebees, the most common British bumblebee species, we showed that a neonicotinoid pesticide called imidacloprid turns night into day for bees. Foraging bumblebees were fed concentrations of imidacloprid that were similar to what they might encounter in the wild (around ten parts per billion). After exposure, the dosed bees were more likely to try to forage at nighttime and sleep in the daytime, and they were more sluggish overall, going on far fewer foraging trips than normal.

At the same time as we were experimenting on bumblebees, we were also studying the response of fruit flies to neonicotinoids. Scientists often use fruit flies as a model to help understand other animals, as we have a deep understanding of their genes and the ability to edit them. In our study, we labelled the brain cells which set the pace of the fruit fly body clock with fluorescent dye, to see if the pesticides could be directly affecting them.

Pollinators At Risk: Neonicotinoid Pesticides Stop Bees And Flies From Getting A Good Night's SleepFruit flies are useful for studying how chemicals affect the brain. Ant Cooper/Shutterstock

In a normal fly, these cells collect information from the eyes and other light-sensing organs. The cells then change shape between daytime and nighttime and release signals to other parts of the body to ensure that sleep and other activities happen at the right time of day. But neonicotinoids appeared to interfere with both of these processes, freezing the body clock cells in daytime mode. Given how similar these cells are between fruit flies and bees, this process may be behind the effects on sleep and foraging that we saw in bumblebees.

The environmental impact

If bees can’t synchronise their foraging with the dawn, when nectar and pollen are most abundant, this will limit the amount of food they can gather, stunting the colony’s ability to grow and produce more bees.

The body clock is also an important part of communication in bees. Honeybees have a dance language which lets them tell each other where the best flowers are. They use the position of the sun in the sky as a tool for navigation, which means that honeybees need to be able to keep track of the time of day within the darkness of the hive. If their body clock is disrupted, it could affect their ability to communicate vital information to each other and reduce their ability to forage and pollinate.

The changes to sleep that we saw in the buff-tailed bumblebees are also worrying. Sleep during the night helps bees form memories, and so if neonicotinoids are disrupting their sleep, it could cause problems with remembering important information, such as the route back to the hive.

The correct timing of sleep is also really important for childcare in the colony. When bumblebees are looking after their young, they have to tend to them and feed them round the clock, taking little naps between feeds. If neonicotinoids change their sleep patterns in a way that they can’t control, adult bumblebees may struggle to properly care for the next generation. All of these effects could potentially prevent colonies from growing and reproducing properly, threatening their long-term survival.

Bumblebees, like honeybees and other bees, are important pollinators for 84% of crops and 80% of wild flowering plants in Europe. Neonicotinoids pose a real threat to not only the health of these pollinating insects, but the agriculture and ecosystems they support. As a scientist who studies the effects of these chemicals, I hope that the “emergency use” that was recently granted by the UK government isn’t a sign of worse things to come.The Conversation

About The Author

Kiah Tasman, Teaching Associate in Physiology, Pharmacology and Neuroscience, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Books on The Environment from Amazon's Best Sellers list

"Silent Spring"

by Rachel Carson

This classic book is a landmark in the history of environmentalism, drawing attention to the harmful effects of pesticides and their impact on the natural world. Carson's work helped to inspire the modern environmental movement and remains relevant today, as we continue to grapple with the challenges of environmental health.

Click for more info or to order

"The Uninhabitable Earth: Life After Warming"

by David Wallace-Wells

In this book, David Wallace-Wells offers a stark warning about the devastating effects of climate change and the urgent need to address this global crisis. The book draws on scientific research and real-world examples to provide a sobering look at the future we face if we fail to take action.

Click for more info or to order

"The Hidden Life of Trees: What They Feel, How They Communicate?Discoveries from A Secret World"

by Peter Wohlleben

In this book, Peter Wohlleben explores the fascinating world of trees and their role in the ecosystem. The book draws on scientific research and Wohlleben's own experiences as a forester to offer insights into the complex ways that trees interact with one another and the natural world.

Click for more info or to order

"Our House Is on Fire: Scenes of a Family and a Planet in Crisis"

by Greta Thunberg, Svante Thunberg, and Malena Ernman

In this book, climate activist Greta Thunberg and her family offer a personal account of their journey to raise awareness about the urgent need to address climate change. The book provides a powerful and moving account of the challenges we face and the need for action.

Click for more info or to order

"The Sixth Extinction: An Unnatural History"

by Elizabeth Kolbert

In this book, Elizabeth Kolbert explores the ongoing mass extinction of species caused by human activity, drawing on scientific research and real-world examples to provide a sobering look at the impact of human activity on the natural world. The book offers a compelling call to action to protect the diversity of life on Earth.

Click for more info or to order