The Pathology of Alzheimer’s Disease

health

The Pathology of Alzheimer’s Disease
Illustration
by McCall Sarrett

Whether it be forgetting 20 years of your life or having the same conversation every five minutes only to forget it each time, memory impairment can take a large toll on everyday life. It can be one of the most confusing aspects of neurodegeneration and is a key symptom of dementia.

Alzheimer’s Disease, also known as AD, is the most common form of dementia, characterized by cognitive difficulties and memory loss. There is currently no official clinical technique for diagnosing AD, other than an autopsy. However, there are two characteristic features of the brain tissue of Alzheimer’s disease patients: amyloid beta (Aβ) plaques and neurofibrillary tangles, both of which have provided a substantial amount of insight into the pathology of neurodegeneration.

“Neurofibrillary tangles arise from a defect in proteins called tau proteins.”

Aβ is a protein that results from proteolysis of Amyloid Precursor Protein (APP). This means that APP is cut into smaller fragments, one of which is the Aβ fragment. APP is cut into these pieces by enzymes called secretases, whose primary role is to cleave these proteins. Various secretases exist, but there is one that is significant for Alzheimer’s pathology – gamma secretase. Gamma secretase produces a special form of Aβ: Aβ-42, the most toxic form of the protein. Once broken up, these protein fragments begin to gather in the space outside of the cells. The key to the toxicity of these proteins is that they are characteristically “sticky”, so they begin to form aggregates. These aggregates continue to develop, and soon these amyloid beta plaques are everywhere, greatly impairing neuronal function.

The Pathology of Alzheimer’s DiseaseFigure by McCall Sarrett

This impact of Aβ on neurological function has led to the Amyloid Hypothesis, a well recognized theory proposing an explanation for the neurodegeneration in Alzheimer’s.

Now, for the second key characteristic: neurofibrillary tangles. Neurofibrillary tangles arise from a defect in proteins called tau proteins. Tau proteins serve as a bridge between structures called microtubules within the cell. Microtubules are supporting molecules which provide shape and structure to the cells, specifically, axons. Tau proteins help these microtubules provide structure to the axons. However, in the case of Alzheimer’s diseaseA neurodegenerative disease characterized by neuronal loss i..., tau proteins separate and accumulate in the cell body, otherwise known as the soma. This causes degeneration of the axons, making it even more difficult for neurons to communicate. This difficulty in neuronal communication is similar to the effects of amyloid beta; however, it is important to note that these tangles differ greatly from the plaques discussed previously in that they influence communication from inside of the cell as opposed to outside.

“Scientists are still unsure of the exact mechanism responsible for the pathology of Alzheimer’s.”

Though both are extremely influential, Aβ and tau are not the only relevant factors when it comes to the pathology of Alzheimer’s. Studies have suggested that the Apolipoprotein E (APOE) gene may be as influential as Aβ. There are three major variants that encode for proteins: ApoE2, ApoE3, and ApoE4. ApoE4 has been shown to correlate with a decrease in synaptic pruning, while ApoE2 results in an increase. Both forms influence astrocytes (important glial cells within the nervous system) and are correlated to their rate of phagocytosis, the process by which the astrocytesStar-shaped glial cells that have a number of functions, inc... engulf cellular material. Each ApoE variant directly influences this rate of phagocytosis, ApoE2, resulting in an increase, and ApoE4, a decrease. This suggests that the astrocytes may be less able to “clear out” the debris floating around in the cell when correlated with ApoE4. Thus, when these plaques build up, the ApoE4 genotype may prevent clearance of these aggregates, contributing to degeneration.

Amyloid beta, tau, and various genes all work together to cause a major communication issue between cells, which is essentially the disease we know as Alzheimer’s. Such neurodegeneration is most common in areas of the brain associated with learning and memory, but eventually spreads throughout the entire brain. With this lack of communication comes a loss of synapses, and eventually, a decrease in brain matter. Thus, it is normal to see decreased brain tissue on an MRIMagnetic resonance imaging, a technique for viewing the stru... as the disease progresses, revealing that Alzheimer’s literally shrinks the brain. Our current models of learning and memory state that synapses play a key role in these processes, providing a possible explanation as to how this pathology correlates to the major symptoms of AD, such as memory loss.

Scientists are still unsure of the exact mechanism responsible for the pathology of Alzheimer’s. Many innovative methods have been researched in an attempt to gain further knowledge of this pathological point, one being cerebrospinal fluid (CSF) biomarkers.

Levels of Aβ and tau can be measured in CSF through a procedure called a lumbar puncture, which collects cerebrospinal fluid. Increased levels of tau and reduced levels of Aβ are seen in patients with Alzheimer’s Disease. This is a result of the Aβ accumulations in the brain, which in turn results in a decreased concentration in the CSF. This data suggests that, in the future, doctors and scientists may be able to predict the cognitive state of a patient by examining protein levels in the CSF.

Currently, there is no definitive cure for Alzheimer’s disease. Yet increasing knowledge of the pathological proteins involved, associated genes, and ongoing scientific research provide hope for an effective treatment in the future.

What breakthrough do you think are needed for medicine to achieve a treatment for Alzheimer’s? Let us know in the comments!

This article originally appeared on Knowing Neurons?

About The Author

Khayla Black is a freshman at New York University Shanghai planning to declare a major in Neural Sciences with a minor in Data Science with a concentration in artificial intelligence. In the future, she hopes to obtain an MD/PhD and become a neuroscientist studying the molecular aspects of learning and memory. During her spare time, Khayla enjoys working with the MYELIN initiative within IYNA as well as reading any neuroscience related material. Outside of studying neuroscience, she enjoys running, teaching at local elementary schools, solving math problems, and drinking immense amounts of coffee.

Related Books

The 36-Hour Day: A Family Guide to Caring for People Who Have Alzheimer Disease, Related Dementias, and Memory Loss

healthAuthor: Nancy L. Mace
Binding: Mass Market Paperback
Features:
  • Great product!

Brand: Grand Central Life amp; Style
Studio: Grand Central Life & Style
Label: Grand Central Life & Style
Publisher: Grand Central Life & Style
Manufacturer: Grand Central Life & Style

Buy Now
Editorial Review: The most trusted guide for caring for persons with Alzheimer's disease, memory loss, and dementia disorders-now revised and updated with practical and legal advice and compassionate guidance for families and caregivers.

When someone in your family suffers from Alzheimer's disease or other related memory loss diseases, both you and your loved one face immense challenges. For over thirty years, this book has been the trusted bible for families affected by dementia disorders. Now completely revised and updated, this guide features the latest information on the causes of dementia, managing the early stages of dementia, the prevention of dementia, and finding appropriate living arrangements for the person who has dementia when home care is no longer an option. You'll learn:
  • The basic facts about dementia
  • How to deal with problems arising in daily care-meals, exercise, personal hygiene, and safety
  • How to cope with an impaired person's false ideas, suspicion, anger, and other mood problems
  • How to get outside help from support groups, friends, and agencies
  • Financial and legal issues you must address.
Comprehensive and compassionate, The 36-Hour Day is the only guide you need to help your family through this difficult time.





Alzheimer's Disease Decoded: The History, Present, And Future Of Alzheimer's Disease And Dementia

healthAuthor: Ronald Sahyouni
Binding: Paperback
Features:
  • Alzheimer s Disease Decoded The History Present and Future of Alzheimer s Disease and Dementia

Brand: Ronald Sahyouni Jefferson W Chen Aradhana Verma
Creator(s):
  • Aradhana Verma
  • Jefferson William Chen

Studio: WSPC
Label: WSPC
Publisher: WSPC
Manufacturer: WSPC

Buy Now
Editorial Review: The book aims to present, educate and inform individuals about Alzheimer's disease in a comprehensive manner. Its scope ranges from the discovery of the disease, epidemiology and basic biological principles underlying it, to advanced stem cell therapies used in the treatment of Alzheimer's. It adopts a "global" perspective on Alzheimer's disease, and include epidemiological data and science from countries around the world. Alzheimer's disease is a rapidly growing problem seen in every country around the world. This is the first and only comprehensive book to cover Alzheimer's disease, and includes the most updated literature and scientific progress in the field of dementia and Alzheimer's disease research. Most books on the market that focus on Alzheimer's disease are targeted at caregivers as practical advice on how to deal with loved ones with the disease. This book instead is a comprehensive and popular science book that can be read by anyone with an interest in learning more about the disease. Dr. Jefferson Chen MD, PhD, co-author, participated in the world's first surgical clinical trial using shunts to treat Alzheimer's disease. His first-hand involvement in a clinical trial for patients with Alzheimer's disease and experience treating Normal Pressure Hydrocephalus (NPH) which is commonly misdiagnosed as Alzheimer's disease lends a unique perspective. This book with appeal to a wide audience, regardless of their scientific or educational background.




The End of Alzheimer's: The First Program to Prevent and Reverse Cognitive Decline

healthAuthor: Dale Bredesen
Binding: Hardcover
Features:
  • AVERY

Brand: AVERY
Studio: Avery
Label: Avery
Publisher: Avery
Manufacturer: Avery

Buy Now
Editorial Review: The instant New York Times and Wall Street Journal bestseller

A groundbreaking plan to prevent and reverse Alzheimer’s Disease that fundamentally changes how we understand cognitive decline.


Everyone knows someone who has survived cancer, but until now no one knows anyone who has survived Alzheimer's Disease.

In this paradigm shifting book, Dale Bredesen, MD, offers real hope to anyone looking to prevent and even reverse Alzheimer's Disease and cognitive decline. Revealing that AD is not one condition, as it is currently treated, but three, The End of Alzheimer’s outlines 36 metabolic factors (micronutrients, hormone levels, sleep) that can trigger "downsizing" in the brain. The protocol shows us how to rebalance these factors using lifestyle modifications like taking B12, eliminating gluten, or improving oral hygiene.

The results are impressive. Of the first ten patients on the protocol, nine displayed significant improvement with 3-6 months; since then the protocol has yielded similar results with hundreds more. Now, The End of Alzheimer’s brings new hope to a broad audience of patients, caregivers, physicians, and treatment centers with a fascinating look inside the science and a complete step-by-step plan that fundamentally changes how we treat and even think about AD.




References

Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., . . . Klein, W. L. (2007, January 24). Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer’s Disease. Retrieved from http://www.jneurosci.org/content/27/4/796

Murphy, M. P., & LeVine, H. (2010). Alzheimer’s Disease and the β-Amyloid Peptide. Journal of Alzheimer’s Disease : JAD, 19(1), 311. http://doi.org/10.3233/JAD-2010-1221

O’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual Review of Neuroscience, 34, 185–204. http://doi.org/10.1146/annurev-neuro-061010-113613

Chung, W.-S., Verghese, P. B., Chakraborty, C., Joung, J., Hyman, B. T., Ulrich, J. D., … Barres, B. A. (2016). Novel allele-dependent role for APOE in controlling the rate of synapseConnections between neurons where a signal is passed from on... pruning by astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10186–10191. http://doi.org/10.1073/pnas.1609896113

Zetterberg, H. (2009, August 19). Amyloid β and APP as biomarkers for Alzheimer’s disease. Retrieved from https://www.sciencedirect.com/science/article/pii/S0531556509001594?via=ihub

health
enafarzh-CNzh-TWtlfrdehiiditjamsptrues

follow InnerSelf on

google-plus-iconfacebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

follow InnerSelf on

google-plus-iconfacebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}