How A Warming World Could Spread Disease

Will climate change cause mosquito-borne diseases to spread? Steve Doggett, Author providedAs the world warms, animals and plants will shift their ranges to keep pace with their favoured climate. While the changing distributions of species can tell us how climate change is affecting the natural world, it may also have a direct impact on us.

One good example is the disease carried by insects.

Those small, familiar flies called mosquitoes are responsible for much human suffering around the globe because of their ability to transmit diseases.

Mosquitoes transmit a number of viruses, such as Dengue, Ross River Virus, Murray Valley Encephalitis Virus and the local variant of the West Nile Virus known as Kunjin.

Could climate change cause these diseases to spread? While this an extremely important health question, the answer is far from simple.

Complicated Life Cycle

The life cycle of mosquitoes and its viral parasites is particularly complicated.

Only adult females consume blood, and the immature stages (larvae) live in fresh or brackish water, filtering out small organic particles.

The virus undergoes certain parts of its lifecycle inside particular mosquito organs, but also requires other organs in the vertebrate host to complete its life cycle. And to get into a vertebrate, such as us, it relies on a hungry blood-sucking insect.

These viruses always have other hosts besides humans, which may include native and domestic animals. The pathway that these viruses take to infect humans is often via our domestic animals, which are also bitten by the same mosquitoes that feed on us.

In addition, rates of virus transmission to humans is also affected by the human built environment, and also human behaviour.

Because mosquitoes breed in water, changes in rainfall patterns are likely to change the distribution and abundance of mosquitoes, and therefore could affect disease transmission.

Australian climate is characterised by its variability, however we have experienced a general trend towards increased spring and summer monsoonal rain across northern Australia, and decreased late autumn and winter rainfall in the south.

Flooding Rains

Kunjin virus is mainly transmitted by a small mosquito called Culex annulirostris, the common banded mosquito, in Australia. We are lucky because human infection rarely causes disease, even though Kunjin and the common-banded mosquito are widespread in Australia.

Kunjin’s close relative, the US strain of West Nile Virus is much more virulent, causing more human disease. These viruses are well known for their ability to mutate quickly, so they are always keeping medical authorities on their toes.

Higher than average rainfall and flooding in eastern Australia in the second half of 2010 and 2011 provided ideal conditions for breeding common banded mosquitoes, and in 2011 a dangerous strain of Kunjin appeared that caused acute encephalitis (swelling of the brain) in horses. This disease has only been detected in one human, however this mosquito feeds on both humans and horses.

This new virulent strain of Kunjin also appeared in new areas east of the Great Dividing Range, suggesting other unknown changes in transmission.

As temperatures increase, mosquito activity will begin earlier in the season and reach higher levels of abundance sooner, and maintain higher populations longer. These factors will all probably tend to increase the rate of transmission of Kunjin to both humans and animals.

Drying Out

While flooding may have helped spread Kunjin, drought may have helped another mosquito-borne virus.

It would be simple to assume that drought would reduce mosquito populations by reducing the larval habitat (water), and thereby reduce the incidence of mosquito-borne disease in Australia.

However, this is not necessarily the case. Another Australian mosquito, Aedes notoscriptus, the striped mosquito, is responsible for transmitting Ross River and Barmah Forest Virus in Australia.

The striped mosquito is unusual in comparison to its cousins because it breeds in small containers of water, such as tree holes in natural environments. The main carrier of Dengue in Australia, Aedes aegypti, shares this habit.

These small container habitats abound in Australia’s urban backyard, with water features, water and food bowls for pets, and various toys providing such breeding places.

With the drought, Australians became much more water wise, and installed various water storage devices in their gardens, ranging from buckets left out in a storm, to professionally installed rain tanks. All these are potential habitat for the striped mosquito to breed.

In this case drought has caused an increase in the abundance of a mosquito virus carrier because of a change in human behaviour.

The Return Of Dengue?

Dengue fever is transmitted in Australia by the mosquito Aedes aegypti. The mosquito is restricted to Queensland, and Dengue fever transmission is restricted to coastal northern Queensland.

Recent modelling predicts that moderate climate change would extend the Dengue risk zone to Brisbane, exposing much larger human populations to risk.

However, before the 1930s, Dengue fever transmission was known south almost to Sydney, and Aedes aegypti was known throughout mainland Australia except the deserts.

Both the mosquito, and the disease, have retreated to Queensland since then, and we don’t know why. What is clear is that we don’t really understand what controls the distribution of Aedes aegypti or Dengue in Australia, but given the contraction of the disease in historical time, it is unlikely that a warming climate will produce a simple response in the insect or the disease.

Australian insects will be affected by climate change, but simple predictions based on increasing average temperatures and changing rainfall patterns miss the important effects of complex biological interactions.

In addition, we are only just beginning to use models that are sophisticated enough to consider how insects might evolve under changing climate.

Investing in a deeper understanding of these complex biological webs, and their outcomes for human society, will result in great returns. Our predictions of the future state of Australian plants and animals will become more accurate and we will also improve human health and manage our biodiversity more sustainably into the future.

About The AuthorThe Conversation

yeats davidDavid Yeates is Director of the Australian National Insect Collection at CSIRO. His research focus is on the taxonomy, systematics and ecology of Australian Diptera and other insect groups, providing information for their sustainable management.

This article was originally published on The Conversation. Read the original article.

Related Book:

InnerSelf Market

Amazon

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.