Scientists Find Answer To Ice Age’s Laurentide Paradox

Scientists Find Answer To Ice Age’s Laurentide Paradox

Scientists have figured out an Ice Age paradox and their findings add to mounting evidence that climate change could bring higher seas than most models predict.

Small spikes in the temperature of the ocean, rather than the air, likely drove the rapid disintegration cycles of the expansive ice sheet that once covered much of North America.

The behavior of this ancient ice sheet—called Laurentide—has puzzled scientists for decades because its periods of melting and splintering into the sea occurred at the coldest times in the last Ice Age. Ice should melt when the weather is warm, but that’s not what happened.

“We’ve shown that we don’t really need atmospheric warming to trigger large-scale disintegration events if the ocean warms up and starts tickling the edges of the ice sheets,” says Jeremy Bassis, associate professor of climate and space sciences and engineering at the University of Michigan.

“It is possible that modern-day glaciers, not just the parts that are floating but the parts that are just touching the ocean, are more sensitive to ocean warming than we previously thought.”

ice 2 23

This mechanism is likely at work today on the Greenland ice sheet and possibly Antarctica. Scientists know this in part due to Bassis’ previous work. Several years ago, he came up with a new, more accurate way to mathematically describe how ice breaks and flows. His model has led to a deeper understanding of how the Earth’s store of ice could react to changes in air or ocean temperatures, and how that might translate to sea level rise.

Last year, other researchers used it to predict that melting Antarctic ice could raise sea levels by more than three feet, as opposed to the previous estimate that Antarctica would only contribute centimeters by 2100.

In the new study, published in the journal Nature, researchers applied a version of this model to the climate of the last Ice Age, which ended about 10,000 years ago. They used ice core and ocean-floor sediment records to estimate water temperature and how it varied. Their aim was to see if what’s happening in Greenland today could describe the behavior of the Laurentide Ice Sheet.

Scientists refer to these bygone periods of rapid ice disintegration as Heinrich events: Icebergs broke off the edges of Northern Hemisphere ice sheets and flowed into the ocean, raising sea level by more than 6 feet over the course of hundreds of years. As the icebergs drifted and melted, dirt they carried settled onto the ocean floor, forming thick layers that can be seen in sediment cores across the North Atlantic basin. These unusual sediment layers are what allowed researchers to first identify Heinrich events.

ice2 2 23

“Decades of work looking at ocean sediment records has shown that these ice sheet collapse events happened periodically during the last Ice Age, but it has taken a lot longer to come up with a mechanism that can explain why the Laurentide ice sheet collapsed during the coldest periods only. This study has done that,” says geochemist and coauthor Sierra Petersen, a research fellow in earth and environmental sciences.

The researchers set out to understand the timing and size of the Heinrich events. Through their simulations, they were able to predict both, and also to explain why some ocean warming events triggered Heinrich events and some did not. They even identified an additional Heinrich event that had previously been missed.

Heinrich events were followed by brief periods of rapid warming. The Northern Hemisphere warmed repeatedly by as many as 15 degrees Fahrenheit in just a few decades. The area would stabilize, but then the ice would slowly grow to its breaking point over the next thousand years. Their model was able to simulate these events as well.

The new model takes into account how the Earth’s surface reacts to the weight of the ice on top of it. Heavy ice depresses the planet’s surface, at times pushing it below sea level. That’s when the ice sheets are most vulnerable to warmer seas. But as a glacier retreats, the solid Earth rebounds out of the water again, stabilizing the system. From that point the ice sheet can begin to expand again.

“There is currently large uncertainty about how much sea level will rise and much of this uncertainty is related to whether models incorporate the fact that ice sheets break,” Bassis says. “What we are showing is that the models we have of this process seem to work for Greenland, as well as in the past so we should be able to more confidently predict sea level rise.”

Portions of Antarctica have similar geography to Laurentide: Pine Island, Thwaites glacier, for example.

“We’re seeing ocean warming in those region and we’re seeing these regions start to change. In that area, they’re seeing ocean temperature changes of about 2.7 degrees Fahrenheit,” Bassis says. “That’s pretty similar magnitude as we believe occurred in the Laurentide events, and what we saw in our simulations is that just a small amount of ocean warming can destabilize a region if it’s in the right configuration, and even in the absence of atmospheric warming.”

The National Science Foundation and the National Atmospheric and Oceanic Administration supported the work.

Source: University of Michigan

Related Books

InnerSelf Market

Amazon

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.