The Farm That Grows Climate Solutions

The Farm That Grows Climate Solutions

High in the mountains of Veracruz, Mexico, a small cooperative is “farming carbon” — practicing agriculture in a way that fights climate change while simultaneously meeting human needs. Although these practices are used by millions of people around the world in some way, people in Western nations are largely unfamiliar with them, and there is little coordinated support to encourage farmers to adopt them. But if supported, implemented and developed on a global scale in conjunction with a massive reduction in fossil fuel emissions, these “carbon farming” practices — a suite of crops and practices that sequester carbon while simultaneously meeting human needs — could play a critical role in preventing catastrophic climate change by removing carbon from the atmosphere and safely storing it in soils and perennial vegetation.

The cloud forest region of Veracruz, Mexico, is a humid tropical highland ecosystem that combines a mostly temperate canopy of trees such as oaks and hickories encrusted with epiphytic ferns, orchids and bromeliads with an understory of mostly tropical vegetation such as cannas, wild taros, passion fruits and tree ferns. But the cloud forest is disappearing. Between 70 and 90 percent of it has been deforested, and what remains is highly fragmented, with only tiny pockets of old growth. Much of the former forest is degraded pasture.

Many people in this region are farmers. Cattle and coffee are the primary products. Neither provides much income, and cattle farming as practiced degrades the soil.

Ricardo Romero of Las Cañadas, the small cooperative described above, is working to develop food production systems that provide a complete diet while incorporating as much of the ecosystem function of the cloud forest as possible. Such systems could also serve as corridors to reconnect fragments of intact forest. And it could do all this while sequestering impressive amounts of carbon.

Romero and his team are doing something very important beyond practicing small-scale sustainable agriculture, fostering community self-reliance, creating jobs, improving biodiversity and bringing degraded land back to life. In 1988 Romero began managing the site for pastured cattle. Over the ensuing seasons, he observed the continued degradation of the soils and ecosystem functions. Degraded soils give up much of their carbon to the atmosphere as carbon dioxide, a greenhouse gas. In 1995 he sold his cows and undertook an impressive ecological restoration effort, propagating and planting 50,000 native trees on 60 hectares (148 acres) while allowing another 40 hectares (99 acres) to regenerate naturally. This was the beginning of an ecotourism enterprise that included tours of an awe-inspiring old-growth cloud forest.

Romero also planted native trees on 22 hectares (54 acres) of the remaining pasture and carefully reintroduced cattle. This system, called silvopasture, combines livestock production with the ecological benefits of trees, including soil regeneration.

Romero and his team are doing something very important beyond practicing small-scale sustainable agriculture, fostering community self-reliance, creating jobs, improving biodiversity and bringing degraded land back to life. These same practices sequester carbon, making Las Cañadas a showcase of some of the world’s best climate mitigation techniques.

Many Forms

The term carbon farming is used to describe a suite of crops and agricultural practices that sequester carbon in the soil and perennial biomass. If widely implemented, these practices have the capacity to sequester hundreds of billions of tons of carbon from the atmosphere in the coming decades. Unlike high-tech geoengineering strategies, these practices can also feed people, build more fertile soils and contribute to ecosystem health.

Las Cañadas practices managed grazing, fodder banks and silvopasture — all of which have been shown to sequester carbon.Carbon farming can take many forms. First and simplest are modifications to annual crop production to reverse the loss of soil carbon from tillage. For example, Las Cañadas practices biointensive crop production with very high yields in small spaces through sophisticated organic techniques. Practices like this have been found to sequester more carbon than even the best conventional annual cropping systems. The larger milpas, or crop fields, demonstrate carbon-sequestering agroecological approaches to production of maize, beans and soybeans, including crop rotation, cover crops and contour hedgerows. Although these practices have a fairly low carbon sequestration rate, they are widely applicable and easily adopted and thus have great global mitigation potential.

Certain livestock systems also constitute carbon farming. These systems are climate friendly even when we account for methane releases. For example, Las Cañadas practices managed grazing, fodder banks and silvopasture — all of which have been shown to sequester carbon. Improved livestock production models typically have a low to moderate carbon sequestration on a per-area basis, but like improved annual cropping systems, they don’t require people to change their diets. Given that more than two-thirds of global farmland is pasture, there is great potential to scale up these practices to mitigate climate change.

It is perennial crops, however, that offer the highest potential of any food production system to sequester carbon, especially when they are grown in diverse, multi-layered systems. With their plant nursery and seed company, Romero has assembled a world-class collection of perennial crops for their climate with a special focus on perennial staple crops, analogs to maize and beans that grow on trees, vines, palms and herbaceous perennials. The cooperative has also planted a highly diverse edible forest of these species in a system called multistrata agroforestry — the gold standard of biodiversity and carbon sequestration in agriculture.

Carbon farming alone is not enough to avoid catastrophic climate change. … But it does belong at the center of our transformation as a civilization. All that said, producing food, growing industrial materials and sequestering carbon is not enough for a 21st-century farmer. Agriculture must also adapt to a changing climate. Las Cañadas has a stated goal to “establish production systems that are resilient to prolonged droughts, excessive rains, floods or abnormal frosts.” Although carbon farming practices aren’t necessarily adaptive, in practice almost all of them are. Among the agricultural adaptation techniques on display at Las Cañadas are increases in soil organic matter, crop diversification and livestock integration.

At present, the tropics have stronger carbon farming options than colder climates; many of the agroforestry techniques that have the highest sequestration rates are largely confined to the tropics, and most of the best perennial crops available today are also native to, or grown best in, the tropics. The head start the tropics have on carbon farming provides an excellent opportunity for wealthy countries to repay climate debt by bankrolling mitigation, adaptation and development projects in the Global South and to take lessons from the endeavors already under way there.

Carbon farming alone is not enough to avoid catastrophic climate change, even if it were practiced on every square meter of farmland. But it does belong at the center of our transformation as a civilization. Along with new economic priorities, a massive switch to clean energy, and other big changes to the way our societies work, carbon farming offers a pathway out of destruction and a route to hope. Along the way it can help address food insecurity, injustice, environmental degradation and some of the core problems with the global food system.View Ensia homepage

About The Author

toensmeier ericEric Toensmeier is an award-winning author, an appointed lecturer at Yale University, a senior fellow with Project Drawdown and an international trainer. Eric has studied useful perennial plants and their roles in agroforestry systems, and cultivates about 300 species in his urban garden. Photo by Rob Deza. perennialsolutions.org/

The following is adapted from The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security by Eric Toensmeier (2016). The book introduces the concept of carbon farming, explains how it can help mitigate climate change, and explores strategies for adoption around the world. Published with permission from Chelsea Green Publishing.

This article originally appeared on Ensia

Related Book:

InnerSelf Market

Amazon

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.