New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option

New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option Juergen_Wallstabe/Shutterstock

A proposed multibillion-dollar project to build a pumped hydro storage plant could make New Zealand’s electricity grid 100% renewable, but expensive new infrastructure may not be the best way to achieve this.

New Zealand’s electricity generation is already around 80% renewable, with just over half of that provided by hydro power. The government is now putting NZ$30 million towards investigating pumped hydro storage, which uses cheap electricity to pump river or lake water into an artificial reservoir so that it can be released to generate electricity when needed, especially during dry years when hydro lakes are low.

New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option

The response to the announcement was mostly enthusiastic - not least because of the potential for local jobs. But whether it is the best solution needs careful evaluation.

There are many realisable changes to electricity demand, and New Zealand should consider other, potentially cheaper options that deliver more efficient use of electricity.

Promise of a purely renewable grid

Electricity is mooted to play a major role in achieving New Zealand’s target of net zero carbon emissions by 2050. To support the government’s plan to accelerate the electrification of the transport and industrial heating sectors, generation will need to grow by around 70% by 2050, all from renewable sources.

Worldwide, pumped hydro energy storage is seen as a promising option to support cheap and secure 100% renewable electricity grids.

New Zealand’s analysis will mainly focus on one particular lake, Lake Onslow. If it stacks up, it would be the biggest infrastructure project since the “think big” era of the 1980s. But at an estimated NZ$4 billion, the cost would also be massive and the project would likely face opposition on ecological grounds.

Such a scheme would be a step towards the government’s target of 100% renewable electricity generation by 2035 and fit with the overall goal of New Zealand achieving net zero carbon emissions by 2050. It would also solve the problem conventional hydropower plants face during dry years, when water storage runs low and fossil-fuelled power stations have to kick in to fill the gap.

But the possible closure of the Tiwai Point aluminium smelter would free up around 13% of renewable electricity supply for flexible use. This alone raises the question whether a pumped storage development on this scale is necessary.

Changing supply and demand

Getting to 100% renewables and achieving a 70% increase in supply in the next 30 years will mainly come from new wind and solar generation (both now the cheapest options for electricity generation) as well as some new geothermal. Major new hydro dams are unlikely because of their significant environmental impacts.

As a result, electricity supplies will become increasingly variable, dependent on the vagaries of sun, wind and river flows. This creates a growing challenge for matching supply with demand, especially if hydro lakes are low.

Last year, the Interim Climate Change Commission concluded New Zealand could get to 93% renewable generation by 2035 under current market conditions. But it warned the final few per cent would require significant overbuilding of renewable generation that would rarely be used.

It suggested the most cost-effective solution would be to retain some fossil-fuelled generation as a backup for the few occasions when demand overshoots supply. At the same time it recommended a detailed investigation into pumped storage as a potential solution for dry years.

A hydropower lake in New Zealand New Zealand already has more than 100 conventional hydropower stations supplying renewable electricity. Dmitry Pichugin/Shutterstock

Electricity demand — the collective consumption of all businesses, organisations and households — is also changing.

Households and businesses are switching to electric vehicles. Farm irrigation is becoming widespread and creates new demand peaks in rural areas. Heat pumps are increasingly used for both heating and cooling. These all create new patterns of demand.

And households aren’t just consuming power. More and more people are installing solar generation and feeding surplus back into the grid or storage batteries. Local community energy initiatives are starting to emerge.

New markets are developing where businesses can be paid to temporarily reduce their demand at times when supply is not keeping up. It is only a matter of time before such demand response mechanisms become commonplace for households, too. In the near future, housing collectives could become virtual power plants, and electric vehicles could feed into the grid when supply is stressed.

Cheaper options with added health benefits

So with more reliance on sun, wind and water, electricity supply will become more variable. At the same time, patterns of demand will become more complex, but will have more potential to be adjusted quickly to match supply, on time scales of minutes, hours or days.

The big problem lies with winter peaks when demand is at its highest, and dry years when supply is at its lowest – especially when these coincide. At these times the potential mismatch between demand and supply can last for weeks.

The current solutions being mooted are to increase the security of supply, either with fossil-powered generation or pumped hydro storage. But there are options on the demand side New Zealand should consider.

New Zealand houses are typically cold because they are poorly insulated and waste a lot of heat. Despite relatively new insulation standards for new houses and subsidies for retrofitting older houses, our standards fall well below most developed countries.

We can take inspiration from Europe where new buildings and retrofits are required to meet near-zero energy building standards. By investing in upgrading the national housing stock to something closer to European standards, we could achieve a significant drop in peak demand as well as additional benefits of lower household heating costs and better health.

Efficient lighting is another under-explored solution, with recent research suggesting a gradual uptake of energy-efficient lighting could reduce the winter evening peak demand (6pm to 8pm) by at least 9% by 2029, with the bonus of lower power bills for households.

Such solutions to the supply-demand mismatch could be much cheaper than a single think-big project, and they come with added benefits for health. Alongside the NZ$30 million being put into investigating pumped hydro storage, I suggest it is time to develop a business case for demand-side solutions.The Conversation

About The Author

Janet Stephenson, Associate Professor and Director, Centre for Sustainability, University of Otago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming

by Paul Hawken and Tom Steyer
9780143130444In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. Available On Amazon

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy

by Hal Harvey, Robbie Orvis, Jeffrey Rissman
1610919564With the effects of climate change already upon us, the need to cut global greenhouse gas emissions is nothing less than urgent. It’s a daunting challenge, but the technologies and strategies to meet it exist today. A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well. Available On Amazon

This Changes Everything: Capitalism vs. The Climate

by Naomi Klein
1451697392In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance to simultaneously reduce gaping inequalities, re-imagine our broken democracies, and rebuild our gutted local economies. She exposes the ideological desperation of the climate-change deniers, the messianic delusions of the would-be geoengineers, and the tragic defeatism of too many mainstream green initiatives. And she demonstrates precisely why the market has not—and cannot—fix the climate crisis but will instead make things worse, with ever more extreme and ecologically damaging extraction methods, accompanied by rampant disaster capitalism. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.comelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.