How Electric Cars Can Help Save The Grid

How Electric Cars Can Help Save The Grid Just think of it as a battery that can also take you to the shops. Steve Jurvetson/Wikimedia Commons, CC BY

A key question amid the consternation over the current state of Australia’s east coast energy market has been how much renewable energy capacity to build, and how fast.

But help could be at hand from a surprising source: electric vehicles. By electrifying our motoring, we would boost demand for renewable energy from the grid, while smoothing out some of the destabilising effects that the recent boom in household solar has had on our energy networks.

Australia’s electricity infrastructure was built largely without renewable energy in mind, and primarily to maintain reliability for when demand peaks. The high uptake of solar panels, while good for reducing carbon emissions, has reduced grid demand by 5-10% in Australia, and as a side-effect has lowered the value of network assets, raised power prices, and made the grid trickier to manage.

Electric vehicles can ease the pressure on spikes in electricity prices by adding storage capacity. They are effectively a distributed storage system - with smart meters they can feed electricity back into the grid when prices are high. These vehicles’ battery reserves can thus help with the balancing of the grid and provide energy in the peak period. Electric vehicles would also add battery storage to the grid at the same time, which can reduce the need to size the grid for demand peaks.

One way to think of electric vehicles is essentially as batteries you can drive. So before the government pursues plans such as spending A$2 billion on expanding the Snowy Hydro scheme, it should do a cost-benefit analysis comparing the returns from similar infrastructure investment in electric vehicles.

According to the Office of the Chief Economist, Australia produced 6 billion kilowatt hours of solar PV in 2015 – enough to run almost 2 million cars, equivalent to 10% of Australia’s total current passenger vehicle fleet. Increasing demand for grid-sourced electricity will put downward pressure on network prices, which typically are roughly half of the cost of a household energy tariff. At a time when demand has declined and policy settings have created lots of investor uncertainty, the increased demand will also encourage investment in new generation capacity.

Electric vehicles can also increase economic activity in Australia and improve air quality and health. Australia has nearly 20 million cars that together drive 280 billion km each year. Passenger vehicles alone consume 20 billion litres of fuel each year in Australia. At A$1.50 per litre, that is A$30 billion per year that is burned, with roughly half the revenues going to multinational oil companies and the other half going into federal coffers as fuel tax.

The health costs of pollution from vehicle emissions adds a further A$1,450 per household per year in major cities, an annual impost of some A$14.5 billion on household and government budgets – roughly the same as what the government earns in fuel tax.

If all vehicles were electric, the same distance could be driven with electricity costing less than A$15 billion, because electric motors are more efficient than internal combustion engines (although this is slightly offset by minor grid losses). This would thus deliver a double saving, in terms of both household fuel bills and reduced health costs.

Changing gear

Of course this won’t happen overnight, but that’s not necessarily a bad thing. The electricity grid will need time to adjust and add extra renewable capacity, as the cost of electric cars comes down and coal power stations get old.

Both economic analysis and recent political experience suggest that encouraging investment in renewable energy is expensive, especially if the only driving factor is the need to cut greenhouse emissions (important though that is).

Here is where electric vehicles can really help the grid. Swapping petrol or diesel cars for electric ones on a large enough scale will increase Australia’s flatlining electricity demand, making it more lucrative for energy suppliers to invest in new generation capacity. Given the increasing cost of gas, and the declining support for coal, on balance most of this demand will be met with new renewable capacity, facilitated by the addition of all these new “batteries you can drive”.

energy use 3 23A suggested pathway to energy sustainability via electric cars. Adapted from Andrich et al. Inequality as an obstacle to sustainable energy use, Energy for Sustainable Development

Government policy should be to set some high-level national interest objectives, such as maintaining gas for domestic use, and then simply not interfere with the market as much as possible. But political leaders are struggling to keep up with the rapid changes in technology and the market. The pathway to sustainability would have been smoother and faster if governments had looked to WA for a gas reservation policy, not intervened by closing coal, and reduced the subsidies that allowed solar power to grow so disruptively fast (particularly in wealthier households).

Making more effort to promote electric cars would also have allowed a more successful transition to renewable energy and reduced the price shocks being suffered by eastern Australia in areas such as the gas market. Fortunately, it is not too late.

Hitting the road

Investing in a new car is not a decision most households take lightly. This is especially true of electric cars, which are expensive, are not marketed widely, are available in only a limited range of models, and are subject to concerns about charging and range.

Presently, electric vehicles are only affordable for higher-income households, which is ironic given the benefits they would offer lower-income households in terms of fuel budgeting and reduced exposure to urban pollution and health costs.

One-third of an electric vehicle’s cost is batteries, which are rapidly coming down in price. Bloomberg New Energy Finance predicts that by 2022, electric models will cost the same as their petrol counterparts. That will be the point of liftoff for sales.

Meanwhile, electric cars have an undoubted cool factor. Buying one is a powerful way to show you care about your community’s future. Pardon the pun, but just look at the way Tesla founder Elon Musk electrified the debate over South Australia’s electricity problems.

For governments, electric vehicles offer an opportunity to make significant inroads on environmental and health problems, not to mention urban planning and infrastructure. The demand for car batteries could also boost related industries, such as lithium mining, in which Australia is a world leader.

Feeling electric

Simple, inexpensive policies could encourage electric vehicle uptake, such as reducing registration fees and stamp duty on electric cars and allowing them to drive in bus or other priority lanes, while also hiking the tax on diesel cars that cause cancer.

Other emerging transport trends, such as car-sharing clubs and ride-sharing apps, could also hasten the uptake of electric vehicles. Sharing increases the number of kilometres driven by each individual vehicle, meaning that the upfront costs are paid back more rapidly, leaving the owner with a car that is paid off and cheaper to run than a petrol or diesel model.

These facts are not lost on the car manufacturers themselves. But given the potential co-benefits to the electricity grid and community health, we might expect power utilities and health agencies to join the push to actively promote electric vehicles – not to mention politicians who are looking to deal with our energy issues and win a few votes along they way.

About The Author

Mark Andrich, Director, Sustainability and Finance Specialist, University of Western Australia and Jemma Green, Research Fellow, Curtin University

This article was originally published on The Conversation. Read the original article.

Related Books

InnerSelf Market



follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration


The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…


green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities | | | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.