If We Do Our Part Count On Nature To Help

If We Do Our Part Count On Nature To Help

How Nature Affects The Carbon Cycle

In Australia and the Arctic, scientists say, they have found unexpected ways in which natural processes are helping to compensate for global warming.

The great drylands of the planet – and they cover almost half of the terrestrial surface – may be bigger players in the carbon cycle than anyone had suspected. The world’s semi-arid regions may absorb huge volumes of carbon dioxide from the atmosphere whenever it rains enough.

Benjamin Poulter of Montana State University and colleagues report in Nature that they used a mix of computer-driven accounting methods to work out where the carbon goes after fossil fuel burning emits extra carbon dioxide into the atmosphere. Decades of meticulous measurement confirm that, overall, carbon dioxide levels are increasing inexorably, and the world is warming accordingly.

But inside this big picture is a lot of seasonal and inter-annual variation. So climate scientists, when they try to work out what all this means for future climates, need to understand the carbon cycle better.

The assumption has always been that the most important terrestrial consumers of carbon dioxide were the tropical rainforests. But the match of terrestrial biogeochemical and atmospheric carbon dioxide and global carbon budget accounting models by 13 scientists from the US, Europe and Australia has revealed a different story.

In 2011 more than half of the terrestrial world’s carbon uptake was in the southern hemisphere – which is unexpected because most of the planet’s land surface is in the northern hemisphere – and 60% of this was in Australia.

Natural Brake

That is, after a procession of unusually rainy years, and catastrophic flooding, the vegetation burst forth and the normally empty arid centre of Australia bloomed. Vegetation cover expanded by 6%.

Human activity now puts 10 billion tonnes of carbon into the atmosphere annually, and vegetation in 2011 mopped up 4.1 billion tonnes of that, mostly in Australia.

There remains a great deal of uncertainty about the carbon cycle and how the soils and the trees manage the extra carbon. Nobody knows what will happen to this extra carbon now in the hot dry landscapes of Australia: will it be tucked away in the soil? Will it be returned to the atmosphere by subsequent bushfires? As scientists are fond of saying, more research is necessary.

But this is an example of negative feedback: as carbon dioxide levels and temperatures rise, the green things respond, and slow the acceleration of both. This is quite different from the positive feedback that follows when Arctic ice – which reflects sunlight – melts and gives way to blue water which absorbs solar energy, thus accelerating the melting.

But even the slow disaster of the polar regions could be accompanied by an ameliorating process. British researchers report in Nature Communications that the ice sheet meltwaters may be rich in iron. A boost of iron would stimulate phytoplankton growth, which means more carbon dioxide could accordingly be absorbed from the atmosphere.

Feeding The Oceans

The scientists collected meltwater from a Greenland glacier in the summer of 2012, and then tested it to discover significant quantities of what geochemists call “bio-available” iron.

So, in another example of those cycles of the elements that make the world go round, ice that scrapes over rock also delivers vital nutrients to the sea, for marine plants to take up yet more carbon dioxide and flourish more vigorously in the oceans and keep the planet a little cooler.

The Greenland research gives scientists a chance to estimate more accurately the delivery of this dietary supplement to the oceans: they reckon somewhere between 400,000 and 2.5 million tonnes a year in Greenland and somewhere between 60,000 and 100,000 tonnes in Antarctica. Or, to put it more graphically, it would be like dropping 3,000 fully-laden Boeing 747s into the ocean each year.

“The Greenland and Antarctic ice sheets cover around 10% of the global land surface,” said Jon Hawkings, of the University of Bristol, UK. “Our finding that there is also significant iron discharged in runoff from large ice sheet catchments is new. This means that relatively high concentrations are released from the ice sheet all summer, providing a continuous source of iron to the coastal ocean.” – Climate News Network

About the Author

Tim Radford, freelance journalistTim Radford is a freelance journalist. He worked for The Guardian for 32 years, becoming (among other things) letters editor, arts editor, literary editor and science editor. He won the Association of British Science Writers award for science writer of the year four times. He served on the UK committee for the International Decade for Natural Disaster Reduction. He has lectured about science and the media in dozens of British and foreign cities. 

Science that Changed the World: The untold story of the other 1960s revolutionBook by this Author:

Science that Changed the World: The untold story of the other 1960s revolution
by Tim Radford.

Click here for more info and/or to order this book on Amazon. (Kindle book)

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.