Caribbean Island Buried By Eruption Goes Green With Volcano Power

Caribbean Island Buried By Eruption Goes Green With Volcano Power

The eastern Caribbean island of Montserrat has suffered more than its fair share of natural disaster.

In 1989, Hurricane Hugo struck the island, causing massive destruction with more than 90% of the island’s structures damaged. In 1995, just as the island started to recover, the island’s Soufrière Hills volcano burst into life, entering a cycle of eruptive activity that continues to the present day. The eruption had an enormous impact on the island, killing 19 people, leaving two-thirds of the island nation uninhabitable, and in 1997 completely burying the capital city, Plymouth, under metres of volcanic rock, ash and mud. More than half the island’s population of around 10,000 were compelled to emigrate.

Today, however, Montserrat is putting this violent geological heritage to good use. Known as the “Emerald Isle” of the Caribbean due to historical ties with the Irish, Montserrat (in fact a UK dependent territory) is poised to become one of the world’s few metaphorically “green” and sustainable islands. The same geological forces unleashed by the Soufrière Hills volcano are being harnessed to power the island’s electricity grid from a geothermal source.

Geothermal energy, the productive use of the vast quantity of thermal energy within the Earth’s crust, is one of the few renewable, low-carbon emission energy sources that can consistently generate power 24-hours a day, irrespective of the season. Its primary limitation is not weather but location, as it can only be exploited in places with specific geology, where some of the Earth’s intense inner heat reaches close enough to the surface to be of use. Montserrat’s geology is ideal for geothermal use: hot molten magma rises to shallow depths, driven by the forces of regional plate tectonics. The heat from this magma warms the surrounding rocks, providing a heat source that can be tapped if it can be brought back to the surface. Rainwater and seawater are natural aids to this process as they penetrate through cracks and pores in the rocks to several kilometres beneath the island, absorbing heat from the magma heated rocks. Once heated, the hot fluid rises buoyantly to shallower levels where it can be tapped by drilling geothermal wells. As the ascending fluid boils it produces pressurised steam which rotates turbines to generate electricity.

The high cost of drilling wells (a single well can cost several million US dollars) coupled with the potential risk of drilling an unproductive well, are the principle reasons that geothermal potential has not been fully exploited. To increase the likelihood of drilling a productive well, the project to exploit geothermal power on Montserrat used an array of technologies, such as magnetotellurics and seismic tomography to more clearly understand the rocks beneath the surface.

montserrat volcano power2

Conceptual model based on survey data to home in on best site for drilling a well. Ryan, Peacock, Shalev, Rugis (2013), Montserrat geothermal system: a 3D conceptual model, Geophys. Res. Lett. doi: 10.1002/grl.50489.

Magnetotellurics uses naturally occurring signals from lightning storms and charged particles ejected from the sun to penetrate below ground. Seismic tomography uses the responses of pressure waves created by carefully generated explosions to generate images of the rocks. Aided by researchers at the University of Auckland these techniques were used to create the subsurface maps that have successfully guided Montserrat’s geothermal drilling programme.

Between March and September of 2013 the Iceland Drilling Company drilled Montserrat’s first two geothermal wells, to depths of 2,300 and 2,900 metres, striking temperatures of over 260°C. While testing is still ongoing, the initial results suggest that the fluid flowing from the wells will be able to generate more power than needed by the island’s reduced population of around 5,000 inhabitants. Once completed, the geothermal power station will free the island from its current reliance on expensive diesel-powered generators for its electricity – currently among the most expensive electricity in the world.

Montserrat is not the only nation in the region with geothermal aspirations. All of the islands of the Lesser Antilles have similar geological settings and therefore geothermal potential. The French island of Guadeloupe, with 15MW of installed capacity, is the only Caribbean island that currently uses geothermal energy for electricity, but recently private investment in St Kitts and Nevis and a European Union funded project in Dominica have also resulted in several promising exploratory wells, with discussions underway on other islands keen to harness their geothermal potential.

Geoscientists have recognised the geothermal potential of the region for many decades. But it is only in the past few years that the promise of a cheap, local energy source that can free the region from volatile oil prices has caught the imagination of regional governments and agencies.

This article originally appeared on The Conversation

About The Author

ryan grahamGraham Ryan has a 15 year background in geothermal geophysics and Volcanology. He has conducted and led several geothermal exploration projects all over the globe; in New Zealand, The Western United States, The Caribbean, South America and East Africa. He specialises in using electromagnetic techniques, particularly magnetotellurics, to image and interpret geothermal systems. He also has experience in active volcano monitoring at the Montserrat Volcano Observatory and in laboratory modeling of volcanic processes. As well as conducting commercial exploration he is also an active researcher and has published over 20 articles in international journals.

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.