Revolutionary Perovskite Solar Cells Could Be A Game Changer

Revolutionary Perovskite Solar Cells Could Be A Game Changer

Whenever I tell people I work with solar cells I am asked the same two questions: are they ever going to be really cheap? And can you get me some? While the answer to the second question is no, the answer to the first is a lot more positive. Year on year, solar panels have been plunging in price and improving in the efficiency with which they can convert light into energy.

At the same time fossil fuel costs continue to rise, and in the next few years we will reach the point where the costs overlap – some figures suggest this may have already happened. The question is not whether solar energy can supplant fossil fuels as the cheapest means to produce energy, but rather when.

While this has provided an enormous boost to the solar industry, the main excitement in the solar sector today is due to a new type of material called perovskite. Combining some of the best qualities of more mainstream materials, it has proved incredibly flexible – to the point that University of Sheffield researchers have manufactured perovskite solar cells as a spray-on liquid. So what is perovskite, and what’s the buzz around it?

Solar cells, the component of solar panels that reacts to light, are built from what are known as photovoltaic materials. When light hits these materials electrons are freed to move through the material. With careful design of the structure of these solar cells, these electrons can be collected into a flow of electrical current. This is the process that provides the somewhat magical property of solar panels – sunlight in and electricity out.

Inside A Solar Panel

Broadly speaking, solar cells can be divided into two distinct groups – those based on inorganic photovoltaic materials, such as silicon or cadmium telluride, and those based on specific organic compounds, such as PCDTBT. Both have their own respective advantages and disadvantages.

The inorganic materials are already industrially well-established, capable of converting light to electricity at greater than 20% efficiency and create solar panels with more than 25-year lifespans. The downside is that the raw materials required, particularly with silicon, can be expensive.

Organic solar cells are based on potentially low-cost materials and can even be manufactured from a liquid solution, which makes them very fast and cheap to produce. However, even on a laboratory-scale, organic solar cells struggle to achieve efficiencies of more than 10%. Even more crucially, the organic compounds gradually decompose under light, often reducing panel lifetime to the order of months or weeks rather than years. Consequently these organic materials have rarely been used to produce solar panels, as no one likes the idea of having to climb on their roof to replace them every six months. Ideally we want a solar cell with the performance and long term stability of inorganic materials with the ultra-low cost of organic materials.

Enter Perovskite

In the past few years solar energy research has witnessed the emergence of a remarkable new class of materials known as perovskites. This is a hybrid organic-inorganic material, essentially an organic compound with an inorganic element attached. Perovskite refers to the specific type of crystal structure, which occurs naturally in certain minerals. These hybrid compounds have this crystal structure but are also a complex combination of organic ammonia and methyl groups with inorganic lead iodide or lead chloride molecules attached.

The reason for the excitement surrounding these materials is the frankly staggering rate at which they have developed. Previously whenever a new material was discovered it had taken some 10-20 years of research to reach an efficiency rate of even 10%. Perovskite solar cells only emerged in 2012, but have already clocked up conversions of more than 19% efficiency. This blistering rate of development is unprecedented in solar research.

As a hybrid material, as well as boasting good efficiencies as with inorganic materials, perovskites can also take advantage of organic solar materials' capacity to be applied as a liquid solution. This is what Professor David Lidzey’s group at the University of Sheffield has taken advantage of, spraying the perovskite as a liquid coating onto a substrate material. This allows solar cells to be manufactured at high volumes and low cost.

The Future Of Perovskites

Does this mean that all future solar cells will be based on perovskites? It’s far too early to say. Although they have many benefits there are still a number of key challenges to be overcome.

There are some questions regarding the potential environmental impact of the lead content of the material (although work is ongoing to remove the requirement for lead) and how easily production can be up-scaled to a useful commercial size. As with organic solar cells, their long term stability is also highly questionable and they are particularly sensitive to moisture – a few drops of water can completely destroy the material.

So building a perovskite solar panel module capable of surviving for decades outdoors is most likely still some way off – in fact there’s no guarantee it’s even possible. But what is for certain is that the potential of perovskite solar cells is staggering, and if the material’s promise can be realised it could completely revolutionise the capabilities of solar energy.

The ConversationJon Major is affiliated with the national SUPERGEN 'supersolar' research consortium.

This article was originally published on The Conversation.
Read the original article.

About The Author

major jonJon Major is a Research fellow at University of Liverpool.His research interests include thin film, photovoltaics, semiconductors, and transparent conductors

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.