Why The Humble Legume Could Be The Answer To Fertiliser Addiction

Why The Humble Legume Could Be The Answer To Fertiliser Addiction An assortment of legumes. Morinka/Shutterstock

Peas, lentils, chickpeas, beans and peanuts: if it comes in a pod then chances are it’s a legume. These unassuming food crops have a special ability that makes them fairly unique in the plant kingdom.

They can convert nitrogen gas – which is abundant in the air – to something altogether more rare and important to plants: ammonia. Ammonia can be immediately converted to proteins within a plant, helping it grow. That’s why legume crops don’t need nitrogen fertiliser, and they even leave some of the nitrogen they produce in the soil for other plants to use.

Most modern farms add nitrogen to fields in synthetic fertilisers. Since the 1960s, annual nitrogen fertiliser production worldwide has increased by a staggering 458%, boosting cereal production in Europe to more than 188 million tonnes a year. At best, half of the nitrogen fertiliser applied to farmland will be taken up and used by the crop. Much of the remainder is lost to the atmosphere, often in the form of nitrous oxide – a greenhouse gas 300 times more potent than CO₂. Some of it leaches into freshwater stored deep underground, predominantly as nitrate.

The most comprehensive study to date found that in the early 2000s, nitrate pollution in drinking water had shortened the lifespan of the average European by six months by promoting conditions such as methemoglobinemia, thyroid disorders, and gastric cancer.

Globally, nitrous oxide emissions from fertilisers and methane from livestock contribute most of agriculture’s greenhouse gases – a sector responsible for about a quarter of all human activity’s planet-warming gases. The EU has set itself a 2030 target for reducing agricultural greenhouse gas emissions and chemical pesticide use by 50%, and synthetic fertiliser use by 20%.

Sometimes, the simplest solution is the best one. By reintroducing an age-old system of growing legumes in rotation with other crops, farms could slash the amount of fertiliser they use while producing nutritious and wildlife-friendly food.

The wonder crop

In a recent study, we found that using legumes in conventional cereal crop rotations can deliver the same amount of nutrition but at a markedly lower environmental cost. That’s because some of the nitrogen that cereal crops need is provided by the previous year’s cropping of legumes on the same field.

As grain legumes such as beans, peas and lentils have more protein and fibre by weight than cereal crops such as wheat, barley and oats, we calculated that an average cereal farm in Scotland could grow a legume crop for one year in a five-year cycle and reduce the amount of nitrogen fertiliser needed over the entire rotation cycle by nearly 50%, while producing the same nutritional output.

By using substantially less fertiliser, greenhouse gas emissions would be expected to fall by as much as 43% over the same period. Grain legumes can also be used as animal feed along with cereals – providing more digestible protein at lower environmental cost.

Scientists only discovered the process by which legumes take nitrogen from the air in the late 19th century, nearly a hundred years after they discovered elemental nitrogen. Special tissues on the roots of legume plants provide a safe haven for thousands of nitrogen-fixing bacteria. In return for a steady supply of sugars, which the legume generates in its leaves using photosynthesis, these bacteria provide ample nitrogen in a form that’s most useful for plant growth.

After the crop is harvested, the legume residues decompose and deliver the useful nitrogen to the soil so that other plants can use it. These crops even work as green manure, by ploughing the still growing plants into the soil to give it more nitrogen.Rows of peanut crops. Peanuts – not just a tasty snack. Zhengzaishuru/Shutterstock

But legumes crops offer many more benefits beyond reducing how much farms rely on fertiliser. Diversifying crop rotations with legumes can reduce the incidence of cereal pests and disease by cutting off their life cycle between years and reducing the need for pesticides.

By virtue of their deep roots, many legumes are also more resistant to drought than conventional crops. Legume flowers provide an excellent source of nectar and pollen for pollinating insects too, and consuming more legumes in the human diet offers a wide variety of health benefits.

Despite all these positives, legumes are not widely cultivated in Europe, covering only 1.5% of European arable land, compared to 14.5% worldwide. In fact, Europe imports a lot of its protein-rich crops from South America, where booming demand for soya beans is driving deforestation. It’s high time farmers in Europe restored these wonder crops to their fields – for less pollution and more nutritious food.The Conversation

About The Author

Michael Williams, Assistant Professor of Botany, Trinity College Dublin; David Styles, Lecturer in Carbon Footprinting, Bangor University, and Marcela Porto Costa, PhD Candidate in Sustainable Agriculture, Bangor University

books_gardening

This article is republished from The Conversation under a Creative Commons license. Read the original article.

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.