Europe’s Carbon-rich Peatlands Show ‘Widespread’ And ‘Concerning’ Drying Trends

Europe’s Carbon-rich Peatlands Show ‘widespread’ And ‘concerning’ Drying Trends

European peatlands could turn from carbon sinks to sources as a quarter have reached levels of dryness unsurpassed in a record stretching back 2,000 years, according to a new study.

This trend of “widespread” and “substantial” drying corresponds to recent climate change, both natural and human-caused, but may also be exacerbated by the peatlands being used for agriculture and fuel.

It comes as another study estimates that the amount of carbon stored in peatlands across northern regions could be as much as double previous, widely reported estimates.

The papers, both published in Nature Geoscience, indicate a need for efforts to conserve peatlands as sites of carbon storage at higher latitudes.

Taken together, the findings are “a real concern”, according to one scientist not involved in the research, given the key role these ecosystems play in the global carbon cycle.

Threatened peat

Peatlands form when waterlogged conditions slow down plant decomposition, meaning layers of dead plants accumulate over many years as peat. They are a vital component in scientists’ understanding of how the planet’s land surface emits and takes up carbon.

Despite only covering around 3% of the Earth’s surface, peatlands contain roughly a fifth of its soil carbon. In Europe, these ecosystems store five times more CO2 than forests.

However, the existence of many peatlands is under threat, partly thanks to centuries of human exploitation of peat as a fuel source or fertiliser.

Damaged peatlands are a significant source of emissions, releasing around 3.5% of global anthropogenic CO2 emissions each year.

Dr Graeme Swindles, a University of Leeds researcher and lead author of one of the papers, lays out the various issues facing these ecosystems in Europe and further afield:

“Cutting, drainage, burning, agriculture, afforestation. All driven by need for peat as a resource or for land-use practices not in line with keeping healthy peatlands. Climate warming and drying is also a major factor in tandem with these.”

While waterlogged peat will continue to store carbon, disturbances resulting from climate fluctuations or humans damaging these ecosystems allow oxygen to enter it, triggering the release of CO2.

Many European peatlands have already shown evidence of this transition, as the vegetation they support shifting from peat mosses to grass and shrubs.

Drying trend

The first paper, produced by Swindles and a large international group of scientists, was welcomed by University of Leicester wetland ecologist Prof Susan Page as a “robust piece of work” – and one with some significant implications.

It identifies a drying trend across European peatlands, from Scandinavia to the Baltics, that has become particularly pronounced in the last 200 years. Page explains to Carbon Brief:

“This trend should be of concern given that peatlands deliver a range of beneficial, but often undervalued ecosystem services, including carbon storage and sequestration and, therefore, have an important role to play in climate mitigation.”

While the results are not merely the result of human interventions, the authors note that European peatlands “may now be moving away from natural baselines”. The results were most severe for peatlands across Great Britain and Ireland.

As there is no long-term hydrological monitoring data available, the scientists use the presence of shells (or “tests”) from tiny, bog-dwelling amoeba to gauge historic water levels.

They analysed reconstructions of 31 European peatlands, concluding 60% of the sites were drier from 1800 to 2000 than they had been for the last 600 years.

Furthermore, 40% of sites were at their driest in 1,000 years, and 24% were drier than they had ever been across the entire 2,000-year record.

While they concluded that this effect mirrored an increasingly dry climate in the region, they also note that human influence in peatlands is likely to have exacerbated the trend. In total, they identified significant damage by people in 42% of the sites and a further 29% suffering from minor damage.

However, Swindles notes that they “mostly worked on the most intact sites in Europe…so there are many more that have suffered drainage far worse than this”.

These results could be particularly significant in light of the second paper, which suggests the role played by European peatlands in storing carbon may be even greater than previously imagined.

Doubling storage

In their study, Prof Jonathan Nichols and his colleague Prof Dorothy Peteet, both at Columbia University in New York, estimate that northern peatlands store approximately 1,055 gigatonnes (Gt) of carbon.

They compared this to a previous, widely cited estimate made by Dr Zicheng Yu from Lehigh University and his collaborators back in 2010, who arrived at a figure of 547Gt for the same region.

Nichols explains their work to Carbon Brief, noting that past analyses did not properly account for undersampled regions, such as Asia and Southern Europe.

Peatland carbon, he says, is normally measured using a “time-history method” that involves averaging together the rate at which carbon has accumulated over time at a variety of sites, combined with the area of the peatland to get the total amount of carbon.

According to their paper, past attempts that have used this method have been affected by “several known sources of sampling bias”.

Specifically, the pair highlight the assumption that peat accumulation rates over time are the result of the global climate and are, therefore, similar across the northern hemisphere.

Nichols explains to Carbon Brief how their method improves on this assumption:

“The big difference is how I average all the different sites together…Most of the sites that people have measured carbon accumulation rate at are in Northwest Europe and Canada. So you basically bias your calculations towards those places and away from other places…[We tried to] fix that problem by weighting our averages based on area, instead of arbitrarily based on how many measurements had been made.”

The researchers used over 4,000 radiocarbon measurements to determine the age of peat from 645 peatland sites.

They incorporated previously unused data from the Neotoma Paleoecology Database, together with new computer algorithms for estimating the history of peat carbon accumulation and when peatlands were formed.

Nichols notes that while their final figure for carbon storage is considerably higher than previous data-driven efforts, modelling studies have already yielded higher figures:

“If you used an earth system model to predict how much peat there should be, it’s usually more than what we get when we measure, so hopefully this will make it so they are more in line.”

Potential shortcomings

Carbon Brief talked to a number of scientists who expressed surprise at Nichols and Peteet’s analysis, given the far larger estimate of carbon storage it yielded. Others raised questions about the methods the pair had used to arrive at their final figure.

Yu, who led the team that arrived at the 2010 peatland estimate, tells Carbon Brief that while he is pleased to see such a paper achieving prominence, he is concerned there are “major technical shortcomings” that have led to this considerable revision.

He tells Carbon Brief that while scientists working in this area have “long recognised” that accounting for regional differences between peatlands is the “right way to go”, lack of sufficient data has hampered their efforts:

“In this regard, this new paper has made a potentially important progress and improvement by attempting the calculations of carbon accumulation rates for each of eight peat regions, with a goal to account for spatial bias.”

(As part of their analysis, the researchers divided northern peatlands into eight regions, based mainly on political boundaries, that tend to be reported in scientific literature. They also devised two other ways of dividing the region up to eliminate any biases.)

Yu goes on to say that it is “unfortunate and perhaps unavoidable” that, from what he could tell, Nichols and Peteet had to use a single average carbon density value for all sites, despite the known variation across peatlands.

He adds that by incorporating previously overlooked data, the authors of the new paper have included sites that would not normally be considered under the category of “northern” peatlands. Among these are some parts of southern Europe and even a couple in North Africa.

Yu says that, in his view, the combination of these two factors has led to an overestimation of the amount of carbon storage provided by northern peat.

Responding to this criticism, Nichols tells Carbon Brief that beyond the average carbon density, they also took into account the considerable variation and uncertainty by incorporating a large distribution of values based on 16,000 measurements. As for the wider array of locations, he says this “gets right at the point of the paper”:

“We set out to measure carbon in peatlands based on where we know peatlands to exist, not where we assume them to be.”

In practice, this means including data from unconventional areas, including regions where peatlands are sparse. Overall, he says their methods were designed to produce “much wider uncertainties” but also a final result that is closer to the “real” answer than previous attempts.

‘Real concern’

The publication of these two papers serves to highlight the importance of peat for scientists’ understanding of the climate system, as well as the need to preserve and restore peatlands.

Prof Pete Smith, a soils expert at the University of Aberdeen and Intergovernmental Panel on Climate Change author who was not involved in either study, tells Carbon Brief:

“Taken together, the studies suggest that high-latitude peatlands are acting as a significant carbon sink, as they are growing in area and carbon stock – but, if they are also drying, there is potential that they could turn from net carbon sinks to sources. Given the huge store of carbon in high latitude peatlands, that is a real concern.”

He notes that while the Swindles paper suggests drying may not yet be beyond “normal peatland drying cycles”, the shift away from long-term baselines “may be pushing them closer to a threshold whereby peat formation is replaced by peat degradation, which would lead to massive losses of carbon to the atmosphere”.

Page says a particular concern is that a combination of these perturbations and human activities have a “cumulative effect”.

Swindles and his team write that with European peatlands in a “state of transition”, there are already measures underway to restore some of them by damming artificial drains and gullies.

They note that these actions may be “vital” in protecting against both human impacts and future global warming. They say these initiatives must take their findings into account.

For his part, Nichols says that considering the threats facing peatlands, it is important for scientists to investigate the total volume of peat available across the world, in order to “put a number on how much there is to lose”:

“Peatlands are not usually part of global climate models. If we want to make realistic predictions of future climate, peatlands need to be a part of it.”


Swindles, G.T. et al. (2019) Widespread drying of European peatlands in recent centuries, Nature Geoscience,

Nichols, J.E. and Peteet, D.M. (2019) Rapid expansion of northern peatlands and doubled estimate of carbon storage, Nature Geoscience,

This article originally appeared on Carbon Brief


Peatlands – climate regulation and biodiversity

EU Science Hub - Peatlands Mapping

Related Books

Life After Carbon: The Next Global Transformation of Cities

by Peter Plastrik , John Cleveland
1610918495The future of our cities is not what it used to be. The modern-city model that took hold globally in the twentieth century has outlived its usefulness. It cannot solve the problems it helped to create—especially global warming. Fortunately, a new model for urban development is emerging in cities to aggressively tackle the realities of climate change. It transforms the way cities design and use physical space, generate economic wealth, consume and dispose of resources, exploit and sustain the natural ecosystems, and prepare for the future. Available On Amazon

The Sixth Extinction: An Unnatural History

by Elizabeth Kolbert
1250062187Over the last half-billion years, there have been Five mass extinctions, when the diversity of life on earth suddenly and dramatically contracted. Scientists around the world are currently monitoring the sixth extinction, predicted to be the most devastating extinction event since the asteroid impact that wiped out the dinosaurs. This time around, the cataclysm is us. In prose that is at once frank, entertaining, and deeply informed, New Yorker writer Elizabeth Kolbert tells us why and how human beings have altered life on the planet in a way no species has before. Interweaving research in half a dozen disciplines, descriptions of the fascinating species that have already been lost, and the history of extinction as a concept, Kolbert provides a moving and comprehensive account of the disappearances occurring before our very eyes. She shows that the sixth extinction is likely to be mankind's most lasting legacy, compelling us to rethink the fundamental question of what it means to be human. Available On Amazon

Climate Wars: The Fight for Survival as the World Overheats

by Gwynne Dyer
1851687181Waves of climate refugees. Dozens of failed states. All-out war. From one of the world’s great geopolitical analysts comes a terrifying glimpse of the strategic realities of the near future, when climate change drives the world’s powers towards the cut-throat politics of survival. Prescient and unflinching, Climate Wars will be one of the most important books of the coming years. Read it and find out what we’re heading for. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you,, and at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.





follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration


The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…


green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities | | | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.