How We Discovered The World's Largest Tropical Peatland

How We Discovered The World's Largest Tropical Peatland, Deep In The Jungles Of Congo

In the geographical heart of Africa lies a huge wetland. After years of exploring these remote swamps, our research shows that the region contains the most extensive tropical peatland on Earth.

Astonishingly, 145,500 km² of peatland – an area larger than England – went undetected on our crowded planet until now. We found 30 billion metric tonnes of carbon stored in this new ecosystem that nobody knew existed. That’s equivalent to 20 years of current US fossil fuel emissions. You can read the important science in Nature. Here we describe how we did it, and our struggles against sabotage, arrest, and losing our own minds.

Peat is usually associated with cold places, not the middle of the hot, humid, Congo Basin. It’s an organic wetland soil made of partially-decomposed plant debris. In waterlogged places those plants can’t entirely decompose, and are not respired as carbon dioxide into the atmosphere. The peat thus builds up slowly, locking up ever-more carbon. The amounts involved are huge: peat covers just 3% of Earth’s land surface, but stores one-third of soil carbon.

We knew that peat can be formed under some tropical swamp forests. Might the world’s second largest tropical wetland, known as the Cuvette Centrale, overlie peat?

After the eureka moment of asking the right question, we searched to see if somebody else already knew the answer. About once a decade from the 1950s some obscure report would mention in passing that there was peat in the Congo Basin. Not one gave a grid-reference, village or river to locate it. It was important to confirm whether it was present, though, as peatlands in Southeast Asia have been targeted for palm oil and other industrial agricultural projects, leading to huge carbon emissions and catastrophic wildlife losses. Palm oil is now on the march in Africa.

For our Congo search, we had nothing to go on. Given the Congo Basin is slightly larger than India, it is not practical to just turn up and begin your search on foot. To pinpoint where to go, we combined data from different satellites to identify year-round waterlogged areas with the right sort of plants. In 2012, with researchers from Congo and UK universities plus NGO Wildlife Conservation Society, we began to look for peat in northern Republic of Congo.

Life in the swamps

No one was really prepared for the reality of life in the swamps. The forest is quite open, which increases the equatorial heat, but humidity is still 100% which makes it extremely sweaty. Your feet are wet and your new world is filled with insects.

Walking through the swamps is only possible in the dry season. Wading is the mode of transport at all other times. But then when it is dry, there isn’t any free-flowing water. We often had to filter drinking water from the pits that crocodiles excavate and live in. Dry land and water kept us leashed near the edges of the swamp. But, happily we found some peat.

There were various hiccups. The team allegedly did not have the right papers, and was put under “town arrest”, confined to the provincial capital Impfondo. A week in and still no movement, but a friendly BBC journalist asked if the government had any comment on the arrested UK student. The next day everyone was free.

On another occasion, a curious panther unearthed and broke our instrument measuring the water table. But, as the work progressed, we learned more and more about the swamp from the local villagers who made the expeditions possible. We would see elephant feet and gorilla hands imprinted in the peat. We were increasingly in awe that a remote, almost unknown, wilderness such as this could still be found on Earth today.

Into the wild

We were then able to undertake our biggest expedition yet: a 30km walk to the centre of what we suspected was one of the largest single areas of peatland in the region.

In February 2014, our team of three scientists and five assistants from local village Itanga, with the blessing of their chief and elders, began its trek to the middle of the swamp. With all our food and equipment on our backs, the days were spent advancing our way through (or sinking into) the forested swamp, sampling the peat and overlying vegetation every 250 metres, then doubling back to pick up more food and equipment.

In the evenings, we made wooden platforms, on which we could pitch freestanding mountaineering tents. We washed in one of the many muddy pools of water on offer. The team would then sit round the fire – on a platform, to be out of the water – and enjoy a meal of cassava and smoked-dry fish.

After 17 days, covering just 1.5km a day, we finally reached the centre of the swamp between two of the major rivers. Our reward was not only the knowledge that these peatlands are indeed vast. We also found ever-deeper peat, reaching up to 5.9m, roughly the height of a two-storey building.

Yet being in such a remote location was mentally disconcerting. We knew that tree roots would always stop us sinking into the peat up to our necks. And we knew that the rain in a single torrential storm was not enough to flood the swamp and erase our path out. But our senses informed our brains that this was a dangerous place. Days later, wading the last river, we appeared blinking into the bright sunlight of the savanna, all eight of us sank to our knees, elated to have survived.

A carbon reservoir

Our field measurements revealed that just two specific forest types have peat underneath: a year-round waterlogged swamp of hardwood trees and a year-round waterlogged swamp dominated by one species of palm. We then used satellite data to map these two specific peat swamp forests to determine the boundaries of the Congo Basin peatlands. Combining this area with peat depth and peat carbon content from our laboratory analyses allowed us to calculate that just 4% of the Congo Basin is peatland, but it stores as much carbon below ground as that stored above ground in all the trees of the other 96%.

And now what? In policy terms, while the area is not under immediate threat, it needs protecting: as well as being critical habitat for gorillas and forest elephants, the Congo peatlands are only a carbon-rich resource in the fight against climate change when left intact.

The good news is that the Republic of Congo government is considering extending the area of protected swamp by expanding the Lac Tele Community Reserve by up to 50,000 square kilometres. And for us scientists? Now we know that this vast new ecosystem exists, we’d like to know how it works.

The Conversation

About The Author

Simon Lewis, Professor of Global Change Science at University of Leeds and, UCL and Greta Dargie, Postdoctoral Researcher, Tropical Peatlands, University of Leeds

This article was originally published on The Conversation. Read the original article.

Related Books:

InnerSelf Market

Amazon

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.