The Greatest Mass Extinction Ever May Have Been Kicked Off By Microbes

The Greatest Mass Extinction Ever May Have Been Kicked Off By microbes

The worst time to be alive in Earth’s history is unarguably the end-Permian, about 250 million years ago. It is the period when the greatest-ever extinction event recorded took place, killing 97% of all species, an event so severe it has been called The Great Dying.

This event has generally been blamed on massive volcanic eruptions that took place at the same time. But now, in a new analysis, researchers at the Massachusetts Institute of Technology (MIT) argue that the mass extinction event may have been instigated by microbes. These microbes led to a perturbation of the carbon cycle that caused environmental shocks, such as global warming and ocean acidification. The shocks wiped out species in great numbers over a period of tens of thousands of years – a blip on geological scales.

Felt Like The End Of Time

The end-Permian extinction, which took place about 250 million years ago, is the most severe of five known mass extinction events. It killed off the last of the trilobites – a hardy marine species that had survived two previous mass extinction. While land plants survived, almost all forests disappeared. Worse of all, it is the only known extinction event where even insects weren’t spared.

For an event of this size to take place, a lot of things would have had to go wrong. At the time the world was made up of a single supercontinent called Pangea. This large landmass, by altering the dynamics of how carbon is cycled with subducting plates, may have pushed global temperatures to the highest they had ever been.

Then, over the course of about a million years, huge eruptions in Siberia created basalts that cover an area that was about seven times the size of France. This may have pushed the environment past a tipping point by sending even more carbon dioxide into the atmosphere. That would have caused the oceans to acidify, killing more marine life, and heat up, releasing frozen methane. The upshot of all this would have been a “runaway” climate that kept heating up and removing more oxygen from the environment.

The Mighty Microbe

But Daniel Rothman of MIT thinks that the numbers don’t add up. “The changes in the carbon cycle globally are difficult to reconcile with only volcanic activity in Siberia,” he said.

His calculations, just published in the Proceedings of the National Academy of Sciences, were hinting that something else must have caused the runaway event. One hypothesis was that microbial life may have been responsible for that.

“This hypothesis is not as outrageous as it seems. After all, about 2.4 billion years ago, it was microbes in the form of cyanobacteria that gave our atmosphere all of its oxygen,” Rothman added. That period, called the Great Oxygenation Event, also killed most organisms that were adapted to the lack of oxygen and began one of the longest cold periods in Earth’s history. So microbes can certainly have global impact.

With colleagues at MIT, Rothman looked at the evolutionary history of Earth and spotted the rise of a particular type of microbe that occurred around the time of the Great Dying. That microbe, called Methanosarcina, had the ability to digest organic matter to produce methane. (Molecular biologists at MIT have shown that Methanosarcina evolved this ability thanks to the transfer of a single gene from the Clostridia class of bacteria.)

Rothman knew that the chemical process involved in creating the methane relied on the metal nickel. He went looking for evidence that Methanosarcina was thriving at the time in the sedimentary layer of the Meishan region of China. If the environment at that time had any more nickel than normal, then the sediments would hold the record of it.

Rothman chose the Meishan region to look for nickel because it is a particularly well-studied region. Its sedimentary layers have been used to mark and standardise different periods of Earth’s geological history, and they span the period of the Great Dying.

The search was successful. There was indeed a higher amount of nickel in the sediments deposited during that period. Methanosarcina would not have just been effective at creating methane – they would have flourished.

The nickel, Rothman suggests, would have been added to the oceans, where Methanosarcina lived and grew, by the continuous volcanic activity occurring in Siberia. The growing amount of nickel, transported by ocean currents, would have allowed more Methanosarcina to convert organic matter into methane, which would be converted to carbon dioxide through reactions with oxygen. This would have meant increased global temperatures and acidification of the oceans. The latter would have combined with the loss of oxygen (used up in creating the carbon dioxide) to accelerate the extinction in the oceans. And the dead organisms would have provided Methanosarcina with more organic matter to digest.

In short, a microbial innovation may have tipped over the balance to cause the Great Dying.

Marc Reichow at the University of Leicester remains sceptical of these results. He argues that there is no evidence that the increased nickel came from Siberian volcanoes. Rothman agrees that current data cannot identify the source of the nickel.

Many Factor Involved?

“This is an interesting hypothesis, but I think that Great Dying was the doing of many ‘kill mechanisms’ rather than just a single mechanism suggested here,” Reichow said.

There is also doubt over the exact period in which Methanosarcina actually evolved. Current techniques for estimating its origins based on DNA sequence differences have a huge error margin, which means it could have been well before or after the Great Dying.

Rothman concedes that there are limitations. “We believe that volcanism alone could not have caused this extinction event. Instead, what we have done is broadened the conversation by suggesting that it is possible that microbes may have caused it to happen.”

“The implications for today are that there many ways in which natural fluctuations can happen in Earth’s carbon cycle. When studying the changes happening to the carbon cycle now, we should try to take into consideration as many of those as possible to make future predictions.”

About The Author

rathi akshatAkshat has a PhD in organic chemistry from Oxford University as well as a Bachelor of Technology in chemical engineering from the Institute of Chemical Technology in Mumbai. After leaving the lab, he moved into journalism and has written for The Economist, The Hindu and Ars Technica, among others.

This article originally appeared on The Conversation

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

EVIDENCE

Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
White sea ice in blue water with the sun setting reflected in the water
Earth’s frozen areas are shrinking 33K square miles a year
by Texas A&M University
The Earth’s cryosphere is shrinking by 33,000 square miles (87,000 square kilometers) per year.
wind turbines
A controversial US book is feeding climate denial in Australia. Its central claim is true, yet irrelevant
by Ian Lowe, Emeritus Professor, School of Science, Griffith University
My heart sank last week to see conservative Australian commentator Alan Jones championing a contentious book about…
image
Reuters' Hot List of climate scientists is geographically skewed: why this matters
by Nina Hunter, Post-Doctoral Researcher, University of KwaZulu-Natal
The Reuters Hot List of “the world’s top climate scientists” is causing a buzz in the climate change community. Reuters…
A person holds a shell in their hand in blue water
Ancient shells hint past high CO2 levels could return
by Leslie Lee-Texas A&M
Using two methods to analyze tiny organisms found in sediment cores from the deep seafloor, researchers have estimated…
image
Matt Canavan suggested the cold snap means global warming isn't real. We bust this and 2 other climate myths
by Nerilie Abram, Professor; ARC Future Fellow; Chief Investigator for the ARC Centre of Excellence for Climate Extremes; Deputy Director for the Australian Centre for Excellence in Antarctic Science, Australian National University
Senator Matt Canavan sent many eyeballs rolling yesterday when he tweeted photos of snowy scenes in regional New South…
Ecosystem sentinels sound alarm for the oceans
by Tim Radford
Sea birds are known as ecosystem sentinels, warning of marine loss. As their numbers fall, so could the riches of the…
Why Sea Otters Are Climate Warriors
Why Sea Otters Are Climate Warriors
by Zak Smith
In addition to being one of the cutest animals on the planet, sea otters help maintain healthy, carbon-absorbing kelp…

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

green energy2 3
Four Green Hydrogen Opportunities for the Midwest
by Christian Tae
To avert a climate crisis, the Midwest, like the rest of the country, will need to fully decarbonize its economy by…
ug83qrfw
Major Barrier to Demand Response Needs to End
by John Moore, On Earth
If federal regulators do the right thing, electricity customers across the Midwest may soon be able to earn money while…
trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.